core/start-stop-daemon/start-stop-daemon.c

2535 lines
56 KiB
C
Raw Normal View History

/*
* A rewrite of the original Debian's start-stop-daemon Perl script
* in C (faster - it is executed many times during system startup).
*
* Written by Marek Michalkiewicz <marekm@i17linuxb.ists.pwr.wroc.pl>,
* public domain. Based conceptually on start-stop-daemon.pl, by Ian
* Jackson <ijackson@gnu.ai.mit.edu>. May be used and distributed
* freely for any purpose. Changes by Christian Schwarz
* <schwarz@monet.m.isar.de>, to make output conform to the Debian
* Console Message Standard, also placed in public domain. Minor
* changes by Klee Dienes <klee@debian.org>, also placed in the Public
* Domain.
*
* Changes by Ben Collins <bcollins@debian.org>, added --chuid, --background
* and --make-pidfile options, placed in public domain as well.
*
* Port to OpenBSD by Sontri Tomo Huynh <huynh.29@osu.edu>
* and Andreas Schuldei <andreas@schuldei.org>
*
* Changes by Ian Jackson: added --retry (and associated rearrangements).
*/
#include <config.h>
#include <compat.h>
#include <dpkg/macros.h>
#if defined(__linux__)
# define OS_Linux
#elif defined(__GNU__)
# define OS_Hurd
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
# define OS_FreeBSD
#elif defined(__NetBSD__)
# define OS_NetBSD
#elif defined(__OpenBSD__)
# define OS_OpenBSD
#elif defined(__DragonFly__)
# define OS_DragonFlyBSD
#elif defined(__APPLE__) && defined(__MACH__)
# define OS_Darwin
#elif defined(__sun)
# define OS_Solaris
#elif defined(_AIX)
# define OS_AIX
#elif defined(__hpux)
# define OS_HPUX
#else
# error Unknown architecture - cannot build start-stop-daemon
#endif
/* NetBSD needs this to expose struct proc. */
#define _KMEMUSER 1
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#ifdef HAVE_SYS_SYSCALL_H
#include <sys/syscall.h>
#endif
#ifdef HAVE_SYS_SYSCTL_H
#include <sys/sysctl.h>
#endif
#ifdef HAVE_SYS_PROCFS_H
#include <sys/procfs.h>
#endif
#ifdef HAVE_SYS_PROC_H
#include <sys/proc.h>
#endif
#ifdef HAVE_SYS_USER_H
#include <sys/user.h>
#endif
#ifdef HAVE_SYS_PSTAT_H
#include <sys/pstat.h>
#endif
#include <sys/types.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/select.h>
#include <sys/ioctl.h>
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <time.h>
#include <fcntl.h>
#include <dirent.h>
#include <ctype.h>
#include <string.h>
#include <pwd.h>
#include <grp.h>
#include <signal.h>
#include <termios.h>
#include <unistd.h>
#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif
#include <stdbool.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <getopt.h>
#ifdef HAVE_ERROR_H
#include <error.h>
#endif
#ifdef HAVE_ERR_H
#include <err.h>
#endif
#if defined(OS_Hurd)
#include <hurd.h>
#include <ps.h>
#endif
#if defined(OS_Darwin)
#include <libproc.h>
#endif
#ifdef HAVE_KVM_H
#include <kvm.h>
#if defined(OS_FreeBSD)
#define KVM_MEMFILE "/dev/null"
#else
#define KVM_MEMFILE NULL
#endif
#endif
#if defined(_POSIX_PRIORITY_SCHEDULING) && _POSIX_PRIORITY_SCHEDULING > 0
#include <sched.h>
#else
#define SCHED_OTHER -1
#define SCHED_FIFO -1
#define SCHED_RR -1
#endif
#if defined(OS_Linux)
/* This comes from TASK_COMM_LEN defined in Linux' include/linux/sched.h. */
#define PROCESS_NAME_SIZE 15
#elif defined(OS_Solaris)
#define PROCESS_NAME_SIZE 15
#elif defined(OS_Darwin)
#define PROCESS_NAME_SIZE 16
#elif defined(OS_AIX)
/* This comes from PRFNSZ defined in AIX's <sys/procfs.h>. */
#define PROCESS_NAME_SIZE 16
#elif defined(OS_NetBSD)
#define PROCESS_NAME_SIZE 16
#elif defined(OS_OpenBSD)
#define PROCESS_NAME_SIZE 16
#elif defined(OS_FreeBSD)
#define PROCESS_NAME_SIZE 19
#elif defined(OS_DragonFlyBSD)
/* On DragonFlyBSD MAXCOMLEN expands to 16. */
#define PROCESS_NAME_SIZE MAXCOMLEN
#endif
#if defined(SYS_ioprio_set) && defined(linux)
#define HAVE_IOPRIO_SET
#endif
#define IOPRIO_CLASS_SHIFT 13
#define IOPRIO_PRIO_VALUE(class, prio) (((class) << IOPRIO_CLASS_SHIFT) | (prio))
#define IO_SCHED_PRIO_MIN 0
#define IO_SCHED_PRIO_MAX 7
enum {
IOPRIO_WHO_PROCESS = 1,
IOPRIO_WHO_PGRP,
IOPRIO_WHO_USER,
};
enum {
IOPRIO_CLASS_NONE,
IOPRIO_CLASS_RT,
IOPRIO_CLASS_BE,
IOPRIO_CLASS_IDLE,
};
enum action_code {
ACTION_NONE,
ACTION_START,
ACTION_STOP,
ACTION_STATUS,
};
/* Time conversion constants. */
enum {
NANOSEC_IN_SEC = 1000000000L,
NANOSEC_IN_MILLISEC = 1000000L,
NANOSEC_IN_MICROSEC = 1000L,
};
/* The minimum polling interval, 20ms. */
static const long MIN_POLL_INTERVAL = 20 * NANOSEC_IN_MILLISEC;
static enum action_code action;
static bool testmode = false;
static int quietmode = 0;
static int exitnodo = 1;
static bool background = false;
static bool close_io = true;
static bool mpidfile = false;
static bool rpidfile = false;
static int signal_nr = SIGTERM;
static int user_id = -1;
static int runas_uid = -1;
static int runas_gid = -1;
static const char *userspec = NULL;
static char *changeuser = NULL;
static const char *changegroup = NULL;
static char *changeroot = NULL;
static const char *changedir = "/";
static const char *cmdname = NULL;
static char *execname = NULL;
static char *startas = NULL;
static pid_t match_pid = -1;
static pid_t match_ppid = -1;
static const char *pidfile = NULL;
static char *what_stop = NULL;
static const char *progname = "";
static int nicelevel = 0;
static int umask_value = -1;
static struct stat exec_stat;
#if defined(OS_Hurd)
static struct proc_stat_list *procset = NULL;
#endif
/* LSB Init Script process status exit codes. */
enum status_code {
STATUS_OK = 0,
STATUS_DEAD_PIDFILE = 1,
STATUS_DEAD_LOCKFILE = 2,
STATUS_DEAD = 3,
STATUS_UNKNOWN = 4,
};
struct pid_list {
struct pid_list *next;
pid_t pid;
};
static struct pid_list *found = NULL;
static struct pid_list *killed = NULL;
/* Resource scheduling policy. */
struct res_schedule {
const char *policy_name;
int policy;
int priority;
};
struct schedule_item {
enum {
sched_timeout,
sched_signal,
sched_goto,
/* Only seen within parse_schedule and callees. */
sched_forever,
} type;
/* Seconds, signal no., or index into array. */
int value;
};
static struct res_schedule *proc_sched = NULL;
static struct res_schedule *io_sched = NULL;
static int schedule_length;
static struct schedule_item *schedule = NULL;
static void DPKG_ATTR_PRINTF(1)
warning(const char *format, ...)
{
va_list arglist;
fprintf(stderr, "%s: warning: ", progname);
va_start(arglist, format);
vfprintf(stderr, format, arglist);
va_end(arglist);
}
static void DPKG_ATTR_NORET DPKG_ATTR_PRINTF(1)
fatal(const char *format, ...)
{
va_list arglist;
int errno_fatal = errno;
fprintf(stderr, "%s: ", progname);
va_start(arglist, format);
vfprintf(stderr, format, arglist);
va_end(arglist);
if (errno_fatal)
fprintf(stderr, " (%s)\n", strerror(errno_fatal));
else
fprintf(stderr, "\n");
if (action == ACTION_STATUS)
exit(STATUS_UNKNOWN);
else
exit(2);
}
static void *
xmalloc(int size)
{
void *ptr;
ptr = malloc(size);
if (ptr)
return ptr;
fatal("malloc(%d) failed", size);
}
2015-09-18 16:47:45 +02:00
static char *
xstrndup(const char *str, size_t n)
{
char *new_str;
new_str = strndup(str, n);
if (new_str)
return new_str;
fatal("strndup(%s, %zu) failed", str, n);
}
static void
timespec_gettime(struct timespec *ts)
{
#if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0 && \
defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK > 0
if (clock_gettime(CLOCK_MONOTONIC, ts) < 0)
fatal("clock_gettime failed");
#else
struct timeval tv;
if (gettimeofday(&tv, NULL) != 0)
fatal("gettimeofday failed");
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = tv.tv_usec * NANOSEC_IN_MICROSEC;
#endif
}
#define timespec_cmp(a, b, OP) \
(((a)->tv_sec == (b)->tv_sec) ? \
((a)->tv_nsec OP (b)->tv_nsec) : \
((a)->tv_sec OP (b)->tv_sec))
static void
timespec_sub(struct timespec *a, struct timespec *b, struct timespec *res)
{
res->tv_sec = a->tv_sec - b->tv_sec;
res->tv_nsec = a->tv_nsec - b->tv_nsec;
if (res->tv_nsec < 0) {
res->tv_sec--;
res->tv_nsec += NANOSEC_IN_SEC;
}
}
static void
timespec_mul(struct timespec *a, int b)
{
long nsec = a->tv_nsec * b;
a->tv_sec *= b;
a->tv_sec += nsec / NANOSEC_IN_SEC;
a->tv_nsec = nsec % NANOSEC_IN_SEC;
}
static char *
newpath(const char *dirname, const char *filename)
{
char *path;
size_t path_len;
path_len = strlen(dirname) + 1 + strlen(filename) + 1;
path = xmalloc(path_len);
snprintf(path, path_len, "%s/%s", dirname, filename);
return path;
}
static long
get_open_fd_max(void)
{
#ifdef HAVE_GETDTABLESIZE
return getdtablesize();
#else
return sysconf(_SC_OPEN_MAX);
#endif
}
#ifndef HAVE_SETSID
static void
detach_controlling_tty(void)
{
#ifdef HAVE_TIOCNOTTY
int tty_fd;
tty_fd = open("/dev/tty", O_RDWR);
/* The current process does not have a controlling tty. */
if (tty_fd < 0)
return;
if (ioctl(tty_fd, TIOCNOTTY, 0) != 0)
fatal("unable to detach controlling tty");
close(tty_fd);
#endif
}
static pid_t
setsid(void)
{
if (setpgid(0, 0) < 0)
return -1:
detach_controlling_tty();
return 0;
}
#endif
static void
wait_for_child(pid_t pid)
{
pid_t child;
int status;
do {
child = waitpid(pid, &status, 0);
} while (child == -1 && errno == EINTR);
if (child != pid)
fatal("error waiting for child");
if (WIFEXITED(status)) {
int ret = WEXITSTATUS(status);
if (ret != 0)
fatal("child returned error exit status %d", ret);
} else if (WIFSIGNALED(status)) {
int signo = WTERMSIG(status);
fatal("child was killed by signal %d", signo);
} else {
fatal("unexpected status %d waiting for child", status);
}
}
static void
write_pidfile(const char *filename, pid_t pid)
{
FILE *fp;
int fd;
fd = open(filename, O_CREAT | O_WRONLY | O_TRUNC | O_NOFOLLOW, 0666);
if (fd < 0)
fp = NULL;
else
fp = fdopen(fd, "w");
if (fp == NULL)
fatal("unable to open pidfile '%s' for writing", filename);
fprintf(fp, "%d\n", pid);
if (fclose(fp))
fatal("unable to close pidfile '%s'", filename);
}
static void
remove_pidfile(const char *filename)
{
if (unlink(filename) < 0 && errno != ENOENT)
fatal("cannot remove pidfile '%s'", filename);
}
static void
daemonize(void)
{
pid_t pid;
sigset_t mask;
sigset_t oldmask;
if (quietmode < 0)
printf("Detaching to start %s...", startas);
/* Block SIGCHLD to allow waiting for the child process while it is
* performing actions, such as creating a pidfile. */
sigemptyset(&mask);
sigaddset(&mask, SIGCHLD);
if (sigprocmask(SIG_BLOCK, &mask, &oldmask) == -1)
fatal("cannot block SIGCHLD");
pid = fork();
if (pid < 0)
fatal("unable to do first fork");
else if (pid) { /* First Parent. */
/* Wait for the second parent to exit, so that if we need to
* perform any actions there, like creating a pidfile, we do
* not suffer from race conditions on return. */
wait_for_child(pid);
_exit(0);
}
/* Create a new session. */
if (setsid() < 0)
fatal("cannot set session ID");
pid = fork();
if (pid < 0)
fatal("unable to do second fork");
else if (pid) { /* Second parent. */
/* Set a default umask for dumb programs, which might get
* overridden by the --umask option later on, so that we get
* a defined umask when creating the pidfille. */
umask(022);
if (mpidfile && pidfile != NULL)
/* User wants _us_ to make the pidfile. */
write_pidfile(pidfile, pid);
_exit(0);
}
if (sigprocmask(SIG_SETMASK, &oldmask, NULL) == -1)
fatal("cannot restore signal mask");
if (quietmode < 0)
printf("done.\n");
}
static void
pid_list_push(struct pid_list **list, pid_t pid)
{
struct pid_list *p;
p = xmalloc(sizeof(*p));
p->next = *list;
p->pid = pid;
*list = p;
}
static void
pid_list_free(struct pid_list **list)
{
struct pid_list *here, *next;
for (here = *list; here != NULL; here = next) {
next = here->next;
free(here);
}
*list = NULL;
}
static void
usage(void)
{
printf(
"Usage: start-stop-daemon [<option>...] <command>\n"
"\n");
printf(
"Commands:\n"
" -S, --start -- <argument>... start a program and pass <arguments> to it\n"
" -K, --stop stop a program\n"
" -T, --status get the program status\n"
" -H, --help print help information\n"
" -V, --version print version\n"
"\n");
printf(
"Matching options (at least one is required):\n"
" --pid <pid> pid to check\n"
" --ppid <ppid> parent pid to check\n"
" -p, --pidfile <pid-file> pid file to check\n"
" -x, --exec <executable> program to start/check if it is running\n"
" -n, --name <process-name> process name to check\n"
" -u, --user <username|uid> process owner to check\n"
"\n");
printf(
"Options:\n"
" -g, --group <group|gid> run process as this group\n"
" -c, --chuid <name|uid[:group|gid]>\n"
" change to this user/group before starting\n"
" process\n"
" -s, --signal <signal> signal to send (default TERM)\n"
" -a, --startas <pathname> program to start (default is <executable>)\n"
" -r, --chroot <directory> chroot to <directory> before starting\n"
" -d, --chdir <directory> change to <directory> (default is /)\n"
" -N, --nicelevel <incr> add incr to the process' nice level\n"
" -P, --procsched <policy[:prio]>\n"
" use <policy> with <prio> for the kernel\n"
" process scheduler (default prio is 0)\n"
" -I, --iosched <class[:prio]> use <class> with <prio> to set the IO\n"
" scheduler (default prio is 4)\n"
" -k, --umask <mask> change the umask to <mask> before starting\n"
" -b, --background force the process to detach\n"
" -C, --no-close do not close any file descriptor\n"
" -m, --make-pidfile create the pidfile before starting\n"
" --remove-pidfile delete the pidfile after stopping\n"
" -R, --retry <schedule> check whether processes die, and retry\n"
" -t, --test test mode, don't do anything\n"
" -o, --oknodo exit status 0 (not 1) if nothing done\n"
" -q, --quiet be more quiet\n"
" -v, --verbose be more verbose\n"
"\n");
printf(
"Retry <schedule> is <item>|/<item>/... where <item> is one of\n"
" -<signal-num>|[-]<signal-name> send that signal\n"
" <timeout> wait that many seconds\n"
" forever repeat remainder forever\n"
"or <schedule> may be just <timeout>, meaning <signal>/<timeout>/KILL/<timeout>\n"
"\n");
printf(
"The process scheduler <policy> can be one of:\n"
" other, fifo or rr\n"
"\n");
printf(
"The IO scheduler <class> can be one of:\n"
" real-time, best-effort or idle\n"
"\n");
printf(
"Exit status:\n"
" 0 = done\n"
" 1 = nothing done (=> 0 if --oknodo)\n"
" 2 = with --retry, processes would not die\n"
" 3 = trouble\n"
"Exit status with --status:\n"
" 0 = program is running\n"
" 1 = program is not running and the pid file exists\n"
" 3 = program is not running\n"
" 4 = unable to determine status\n");
}
static void
do_version(void)
{
printf("start-stop-daemon %s for Debian\n\n", VERSION);
printf("Written by Marek Michalkiewicz, public domain.\n");
}
static void DPKG_ATTR_NORET
badusage(const char *msg)
{
if (msg)
fprintf(stderr, "%s: %s\n", progname, msg);
fprintf(stderr, "Try '%s --help' for more information.\n", progname);
if (action == ACTION_STATUS)
exit(STATUS_UNKNOWN);
else
exit(3);
}
struct sigpair {
const char *name;
int signal;
};
static const struct sigpair siglist[] = {
{ "ABRT", SIGABRT },
{ "ALRM", SIGALRM },
{ "FPE", SIGFPE },
{ "HUP", SIGHUP },
{ "ILL", SIGILL },
{ "INT", SIGINT },
{ "KILL", SIGKILL },
{ "PIPE", SIGPIPE },
{ "QUIT", SIGQUIT },
{ "SEGV", SIGSEGV },
{ "TERM", SIGTERM },
{ "USR1", SIGUSR1 },
{ "USR2", SIGUSR2 },
{ "CHLD", SIGCHLD },
{ "CONT", SIGCONT },
{ "STOP", SIGSTOP },
{ "TSTP", SIGTSTP },
{ "TTIN", SIGTTIN },
{ "TTOU", SIGTTOU }
};
static int
parse_unsigned(const char *string, int base, int *value_r)
{
long value;
char *endptr;
if (!string[0])
return -1;
errno = 0;
value = strtol(string, &endptr, base);
if (string == endptr || *endptr != '\0' || errno != 0)
return -1;
if (value < 0 || value > INT_MAX)
return -1;
*value_r = value;
return 0;
}
static int
parse_pid(const char *pid_str, int *pid_num)
{
if (parse_unsigned(pid_str, 10, pid_num) != 0)
return -1;
if (*pid_num == 0)
return -1;
return 0;
}
static int
parse_signal(const char *sig_str, int *sig_num)
{
unsigned int i;
if (parse_unsigned(sig_str, 10, sig_num) == 0)
return 0;
for (i = 0; i < array_count(siglist); i++) {
if (strcmp(sig_str, siglist[i].name) == 0) {
*sig_num = siglist[i].signal;
return 0;
}
}
return -1;
}
static int
parse_umask(const char *string, int *value_r)
{
return parse_unsigned(string, 0, value_r);
}
static void
validate_proc_schedule(void)
{
#if defined(_POSIX_PRIORITY_SCHEDULING) && _POSIX_PRIORITY_SCHEDULING > 0
int prio_min, prio_max;
prio_min = sched_get_priority_min(proc_sched->policy);
prio_max = sched_get_priority_max(proc_sched->policy);
if (proc_sched->priority < prio_min)
badusage("process scheduler priority less than min");
if (proc_sched->priority > prio_max)
badusage("process scheduler priority greater than max");
#endif
}
static void
parse_proc_schedule(const char *string)
{
2015-09-18 16:47:45 +02:00
char *policy_str;
size_t policy_len;
int prio = 0;
2015-09-18 16:47:45 +02:00
policy_len = strcspn(string, ":");
policy_str = xstrndup(string, policy_len);
2015-09-18 16:47:45 +02:00
if (string[policy_len] == ':' &&
parse_unsigned(string + policy_len + 1, 10, &prio) != 0)
fatal("invalid process scheduler priority");
proc_sched = xmalloc(sizeof(*proc_sched));
proc_sched->policy_name = policy_str;
if (strcmp(policy_str, "other") == 0) {
proc_sched->policy = SCHED_OTHER;
proc_sched->priority = 0;
} else if (strcmp(policy_str, "fifo") == 0) {
proc_sched->policy = SCHED_FIFO;
proc_sched->priority = prio;
} else if (strcmp(policy_str, "rr") == 0) {
proc_sched->policy = SCHED_RR;
proc_sched->priority = prio;
} else
badusage("invalid process scheduler policy");
validate_proc_schedule();
}
static void
parse_io_schedule(const char *string)
{
2015-09-18 16:47:45 +02:00
char *class_str;
size_t class_len;
int prio = 4;
2015-09-18 16:47:45 +02:00
class_len = strcspn(string, ":");
class_str = xstrndup(string, class_len);
2015-09-18 16:47:45 +02:00
if (string[class_len] == ':' &&
parse_unsigned(string + class_len + 1, 10, &prio) != 0)
fatal("invalid IO scheduler priority");
io_sched = xmalloc(sizeof(*io_sched));
io_sched->policy_name = class_str;
if (strcmp(class_str, "real-time") == 0) {
io_sched->policy = IOPRIO_CLASS_RT;
io_sched->priority = prio;
} else if (strcmp(class_str, "best-effort") == 0) {
io_sched->policy = IOPRIO_CLASS_BE;
io_sched->priority = prio;
} else if (strcmp(class_str, "idle") == 0) {
io_sched->policy = IOPRIO_CLASS_IDLE;
io_sched->priority = 7;
} else
badusage("invalid IO scheduler policy");
if (io_sched->priority < IO_SCHED_PRIO_MIN)
badusage("IO scheduler priority less than min");
if (io_sched->priority > IO_SCHED_PRIO_MAX)
badusage("IO scheduler priority greater than max");
}
static void
set_proc_schedule(struct res_schedule *sched)
{
#if defined(_POSIX_PRIORITY_SCHEDULING) && _POSIX_PRIORITY_SCHEDULING > 0
struct sched_param param;
param.sched_priority = sched->priority;
if (sched_setscheduler(getpid(), sched->policy, &param) == -1)
fatal("unable to set process scheduler");
#endif
}
#ifdef HAVE_IOPRIO_SET
static inline int
ioprio_set(int which, int who, int ioprio)
{
return syscall(SYS_ioprio_set, which, who, ioprio);
}
#endif
static void
set_io_schedule(struct res_schedule *sched)
{
#ifdef HAVE_IOPRIO_SET
int io_sched_mask;
io_sched_mask = IOPRIO_PRIO_VALUE(sched->policy, sched->priority);
if (ioprio_set(IOPRIO_WHO_PROCESS, getpid(), io_sched_mask) == -1)
warning("unable to alter IO priority to mask %i (%s)\n",
io_sched_mask, strerror(errno));
#endif
}
static void
parse_schedule_item(const char *string, struct schedule_item *item)
{
const char *after_hyph;
if (strcmp(string, "forever") == 0) {
item->type = sched_forever;
} else if (isdigit(string[0])) {
item->type = sched_timeout;
if (parse_unsigned(string, 10, &item->value) != 0)
badusage("invalid timeout value in schedule");
} else if ((after_hyph = string + (string[0] == '-')) &&
parse_signal(after_hyph, &item->value) == 0) {
item->type = sched_signal;
} else {
badusage("invalid schedule item (must be [-]<signal-name>, "
"-<signal-number>, <timeout> or 'forever'");
}
}
static void
parse_schedule(const char *schedule_str)
{
char item_buf[20];
const char *slash;
int count, repeatat;
size_t str_len;
count = 0;
for (slash = schedule_str; *slash; slash++)
if (*slash == '/')
count++;
schedule_length = (count == 0) ? 4 : count + 1;
schedule = xmalloc(sizeof(*schedule) * schedule_length);
if (count == 0) {
schedule[0].type = sched_signal;
schedule[0].value = signal_nr;
parse_schedule_item(schedule_str, &schedule[1]);
if (schedule[1].type != sched_timeout) {
badusage("--retry takes timeout, or schedule list"
" of at least two items");
}
schedule[2].type = sched_signal;
schedule[2].value = SIGKILL;
schedule[3] = schedule[1];
} else {
count = 0;
repeatat = -1;
while (schedule_str != NULL) {
slash = strchr(schedule_str, '/');
str_len = slash ? (size_t)(slash - schedule_str) : strlen(schedule_str);
if (str_len >= sizeof(item_buf))
badusage("invalid schedule item: far too long"
" (you must delimit items with slashes)");
memcpy(item_buf, schedule_str, str_len);
item_buf[str_len] = '\0';
schedule_str = slash ? slash + 1 : NULL;
parse_schedule_item(item_buf, &schedule[count]);
if (schedule[count].type == sched_forever) {
if (repeatat >= 0)
badusage("invalid schedule: 'forever'"
" appears more than once");
repeatat = count;
continue;
}
count++;
}
if (repeatat == count)
badusage("invalid schedule: 'forever' appears last, "
"nothing to repeat");
if (repeatat >= 0) {
schedule[count].type = sched_goto;
schedule[count].value = repeatat;
count++;
}
assert(count == schedule_length);
}
}
static void
set_action(enum action_code new_action)
{
if (action == new_action)
return;
if (action != ACTION_NONE)
badusage("only one command can be specified");
action = new_action;
}
#define OPT_PID 500
#define OPT_PPID 501
#define OPT_RM_PIDFILE 502
static void
parse_options(int argc, char * const *argv)
{
static struct option longopts[] = {
{ "help", 0, NULL, 'H'},
{ "stop", 0, NULL, 'K'},
{ "start", 0, NULL, 'S'},
{ "status", 0, NULL, 'T'},
{ "version", 0, NULL, 'V'},
{ "startas", 1, NULL, 'a'},
{ "name", 1, NULL, 'n'},
{ "oknodo", 0, NULL, 'o'},
{ "pid", 1, NULL, OPT_PID},
{ "ppid", 1, NULL, OPT_PPID},
{ "pidfile", 1, NULL, 'p'},
{ "quiet", 0, NULL, 'q'},
{ "signal", 1, NULL, 's'},
{ "test", 0, NULL, 't'},
{ "user", 1, NULL, 'u'},
{ "group", 1, NULL, 'g'},
{ "chroot", 1, NULL, 'r'},
{ "verbose", 0, NULL, 'v'},
{ "exec", 1, NULL, 'x'},
{ "chuid", 1, NULL, 'c'},
{ "nicelevel", 1, NULL, 'N'},
{ "procsched", 1, NULL, 'P'},
{ "iosched", 1, NULL, 'I'},
{ "umask", 1, NULL, 'k'},
{ "background", 0, NULL, 'b'},
{ "no-close", 0, NULL, 'C'},
{ "make-pidfile", 0, NULL, 'm'},
{ "remove-pidfile", 0, NULL, OPT_RM_PIDFILE},
{ "retry", 1, NULL, 'R'},
{ "chdir", 1, NULL, 'd'},
{ NULL, 0, NULL, 0 }
};
const char *pid_str = NULL;
const char *ppid_str = NULL;
const char *umask_str = NULL;
const char *signal_str = NULL;
const char *schedule_str = NULL;
const char *proc_schedule_str = NULL;
const char *io_schedule_str = NULL;
2015-09-18 16:47:45 +02:00
size_t changeuser_len;
int c;
for (;;) {
c = getopt_long(argc, argv,
"HKSVTa:n:op:qr:s:tu:vx:c:N:P:I:k:bCmR:g:d:",
longopts, NULL);
if (c == -1)
break;
switch (c) {
case 'H': /* --help */
usage();
exit(0);
case 'K': /* --stop */
set_action(ACTION_STOP);
break;
case 'S': /* --start */
set_action(ACTION_START);
break;
case 'T': /* --status */
set_action(ACTION_STATUS);
break;
case 'V': /* --version */
do_version();
exit(0);
case 'a': /* --startas <pathname> */
startas = optarg;
break;
case 'n': /* --name <process-name> */
cmdname = optarg;
break;
case 'o': /* --oknodo */
exitnodo = 0;
break;
case OPT_PID: /* --pid <pid> */
pid_str = optarg;
break;
case OPT_PPID: /* --ppid <ppid> */
ppid_str = optarg;
break;
case 'p': /* --pidfile <pid-file> */
pidfile = optarg;
break;
case 'q': /* --quiet */
quietmode = true;
break;
case 's': /* --signal <signal> */
signal_str = optarg;
break;
case 't': /* --test */
testmode = true;
break;
case 'u': /* --user <username>|<uid> */
userspec = optarg;
break;
case 'v': /* --verbose */
quietmode = -1;
break;
case 'x': /* --exec <executable> */
execname = optarg;
break;
case 'c': /* --chuid <username>|<uid> */
/* We copy the string just in case we need the
* argument later. */
2015-09-18 16:47:45 +02:00
changeuser_len = strcspn(optarg, ":");
changeuser = xstrndup(optarg, changeuser_len);
2015-09-24 13:51:41 +02:00
if (optarg[changeuser_len] == ':') {
if (optarg[changeuser_len + 1] == '\0')
fatal("missing group name");
changegroup = optarg + changeuser_len + 1;
}
break;
case 'g': /* --group <group>|<gid> */
changegroup = optarg;
break;
case 'r': /* --chroot /new/root */
changeroot = optarg;
break;
case 'N': /* --nice */
nicelevel = atoi(optarg);
break;
case 'P': /* --procsched */
proc_schedule_str = optarg;
break;
case 'I': /* --iosched */
io_schedule_str = optarg;
break;
case 'k': /* --umask <mask> */
umask_str = optarg;
break;
case 'b': /* --background */
background = true;
break;
case 'C': /* --no-close */
close_io = false;
break;
case 'm': /* --make-pidfile */
mpidfile = true;
break;
case OPT_RM_PIDFILE: /* --remove-pidfile */
rpidfile = true;
break;
case 'R': /* --retry <schedule>|<timeout> */
schedule_str = optarg;
break;
case 'd': /* --chdir /new/dir */
changedir = optarg;
break;
default:
/* Message printed by getopt. */
badusage(NULL);
}
}
if (pid_str != NULL) {
if (parse_pid(pid_str, &match_pid) != 0)
badusage("pid value must be a number greater than 0");
}
if (ppid_str != NULL) {
if (parse_pid(ppid_str, &match_ppid) != 0)
badusage("ppid value must be a number greater than 0");
}
if (signal_str != NULL) {
if (parse_signal(signal_str, &signal_nr) != 0)
badusage("signal value must be numeric or name"
" of signal (KILL, INT, ...)");
}
if (schedule_str != NULL) {
parse_schedule(schedule_str);
}
if (proc_schedule_str != NULL)
parse_proc_schedule(proc_schedule_str);
if (io_schedule_str != NULL)
parse_io_schedule(io_schedule_str);
if (umask_str != NULL) {
if (parse_umask(umask_str, &umask_value) != 0)
badusage("umask value must be a positive number");
}
if (action == ACTION_NONE)
badusage("need one of --start or --stop or --status");
if (!execname && !pid_str && !ppid_str && !pidfile && !userspec &&
!cmdname)
badusage("need at least one of --exec, --pid, --ppid, --pidfile, --user or --name");
#ifdef PROCESS_NAME_SIZE
if (cmdname && strlen(cmdname) > PROCESS_NAME_SIZE)
warning("this system is not able to track process names\n"
"longer than %d characters, please use --exec "
"instead of --name.\n", PROCESS_NAME_SIZE);
#endif
if (!startas)
startas = execname;
if (action == ACTION_START && !startas)
badusage("--start needs --exec or --startas");
if (mpidfile && pidfile == NULL)
badusage("--make-pidfile requires --pidfile");
if (rpidfile && pidfile == NULL)
badusage("--remove-pidfile requires --pidfile");
if (pid_str && pidfile)
badusage("need either --pid of --pidfile, not both");
if (background && action != ACTION_START)
badusage("--background is only relevant with --start");
if (!close_io && !background)
badusage("--no-close is only relevant with --background");
}
static void
setup_options(void)
{
if (execname) {
char *fullexecname;
/* If it's a relative path, normalize it. */
if (execname[0] != '/')
execname = newpath(changedir, execname);
if (changeroot)
fullexecname = newpath(changeroot, execname);
else
fullexecname = execname;
if (stat(fullexecname, &exec_stat))
fatal("unable to stat %s", fullexecname);
if (fullexecname != execname)
free(fullexecname);
}
if (userspec && parse_unsigned(userspec, 10, &user_id) < 0) {
struct passwd *pw;
pw = getpwnam(userspec);
if (!pw)
fatal("user '%s' not found", userspec);
user_id = pw->pw_uid;
}
if (changegroup && parse_unsigned(changegroup, 10, &runas_gid) < 0) {
struct group *gr;
gr = getgrnam(changegroup);
if (!gr)
fatal("group '%s' not found", changegroup);
changegroup = gr->gr_name;
runas_gid = gr->gr_gid;
}
if (changeuser) {
struct passwd *pw;
struct stat st;
if (parse_unsigned(changeuser, 10, &runas_uid) == 0)
pw = getpwuid(runas_uid);
else
pw = getpwnam(changeuser);
if (!pw)
fatal("user '%s' not found", changeuser);
changeuser = pw->pw_name;
runas_uid = pw->pw_uid;
if (changegroup == NULL) {
/* Pass the default group of this user. */
changegroup = ""; /* Just empty. */
runas_gid = pw->pw_gid;
}
if (stat(pw->pw_dir, &st) == 0)
setenv("HOME", pw->pw_dir, 1);
}
}
#if defined(OS_Linux)
static const char *
proc_status_field(pid_t pid, const char *field)
{
static char *line = NULL;
static size_t line_size = 0;
FILE *fp;
char filename[32];
char *value = NULL;
ssize_t line_len;
size_t field_len = strlen(field);
sprintf(filename, "/proc/%d/status", pid);
fp = fopen(filename, "r");
if (!fp)
return NULL;
while ((line_len = getline(&line, &line_size, fp)) >= 0) {
if (strncasecmp(line, field, field_len) == 0) {
line[line_len - 1] = '\0';
value = line + field_len;
while (isspace(*value))
value++;
break;
}
}
fclose(fp);
return value;
}
#elif defined(OS_AIX)
static bool
proc_get_psinfo(pid_t pid, struct psinfo *psinfo)
{
char filename[64];
FILE *fp;
sprintf(filename, "/proc/%d/psinfo", pid);
fp = fopen(filename, "r");
if (!fp)
return false;
if (fread(psinfo, sizeof(*psinfo), 1, fp) == 0)
return false;
if (ferror(fp))
return false;
return true;
}
#elif defined(OS_Hurd)
static void
init_procset(void)
{
struct ps_context *context;
error_t err;
err = ps_context_create(getproc(), &context);
if (err)
error(1, err, "ps_context_create");
err = proc_stat_list_create(context, &procset);
if (err)
error(1, err, "proc_stat_list_create");
err = proc_stat_list_add_all(procset, 0, 0);
if (err)
error(1, err, "proc_stat_list_add_all");
}
static struct proc_stat *
get_proc_stat(pid_t pid, ps_flags_t flags)
{
struct proc_stat *ps;
ps_flags_t wanted_flags = PSTAT_PID | flags;
if (!procset)
init_procset();
ps = proc_stat_list_pid_proc_stat(procset, pid);
if (!ps)
return NULL;
if (proc_stat_set_flags(ps, wanted_flags))
return NULL;
if ((proc_stat_flags(ps) & wanted_flags) != wanted_flags)
return NULL;
return ps;
}
#elif defined(HAVE_KVM_H)
static kvm_t *
ssd_kvm_open(void)
{
kvm_t *kd;
char errbuf[_POSIX2_LINE_MAX];
kd = kvm_openfiles(NULL, KVM_MEMFILE, NULL, O_RDONLY, errbuf);
if (kd == NULL)
errx(1, "%s", errbuf);
return kd;
}
static struct kinfo_proc *
ssd_kvm_get_procs(kvm_t *kd, int op, int arg, int *count)
{
struct kinfo_proc *kp;
int lcount;
if (count == NULL)
count = &lcount;
*count = 0;
#if defined(OS_OpenBSD)
kp = kvm_getprocs(kd, op, arg, sizeof(*kp), count);
#else
kp = kvm_getprocs(kd, op, arg, count);
#endif
if (kp == NULL && errno != ESRCH)
errx(1, "%s", kvm_geterr(kd));
return kp;
}
#endif
#if defined(OS_Linux)
static bool
pid_is_exec(pid_t pid, const struct stat *esb)
{
char lname[32];
char lcontents[_POSIX_PATH_MAX + 1];
char *filename;
const char deleted[] = " (deleted)";
int nread;
struct stat sb;
sprintf(lname, "/proc/%d/exe", pid);
nread = readlink(lname, lcontents, sizeof(lcontents) - 1);
if (nread == -1)
return false;
filename = lcontents;
filename[nread] = '\0';
/* OpenVZ kernels contain a bogus patch that instead of appending,
* prepends the deleted marker. Workaround those. Otherwise handle
* the normal appended marker. */
if (strncmp(filename, deleted, strlen(deleted)) == 0)
filename += strlen(deleted);
else if (strcmp(filename + nread - strlen(deleted), deleted) == 0)
filename[nread - strlen(deleted)] = '\0';
if (stat(filename, &sb) != 0)
return false;
return (sb.st_dev == esb->st_dev && sb.st_ino == esb->st_ino);
}
#elif defined(OS_AIX)
static bool
pid_is_exec(pid_t pid, const struct stat *esb)
{
struct stat sb;
char filename[64];
sprintf(filename, "/proc/%d/object/a.out", pid);
if (stat(filename, &sb) != 0)
return false;
return sb.st_dev == esb->st_dev && sb.st_ino == esb->st_ino;
}
#elif defined(OS_Hurd)
static bool
pid_is_exec(pid_t pid, const struct stat *esb)
{
struct proc_stat *ps;
struct stat sb;
const char *filename;
ps = get_proc_stat(pid, PSTAT_ARGS);
if (ps == NULL)
return false;
/* On old Hurd systems we have to use the argv[0] value, because
* there is nothing better. */
filename = proc_stat_args(ps);
#ifdef PSTAT_EXE
/* On new Hurd systems we can use the correct value, as long
* as it's not NULL nor empty, as it was the case on the first
* implementation. */
if (proc_stat_set_flags(ps, PSTAT_EXE) == 0 &&
proc_stat_flags(ps) & PSTAT_EXE &&
proc_stat_exe(ps) != NULL &&
proc_stat_exe(ps)[0] != '\0')
filename = proc_stat_exe(ps);
#endif
if (stat(filename, &sb) != 0)
return false;
return (sb.st_dev == esb->st_dev && sb.st_ino == esb->st_ino);
}
#elif defined(OS_Darwin)
static bool
pid_is_exec(pid_t pid, const struct stat *esb)
{
struct stat sb;
char pathname[_POSIX_PATH_MAX];
if (proc_pidpath(pid, pathname, sizeof(pathname)) < 0)
return false;
if (stat(pathname, &sb) != 0)
return false;
return (sb.st_dev == esb->st_dev && sb.st_ino == esb->st_ino);
}
#elif defined(OS_HPUX)
static bool
pid_is_exec(pid_t pid, const struct stat *esb)
{
struct pst_status pst;
if (pstat_getproc(&pst, sizeof(pst), (size_t)0, (int)pid) < 0)
return false;
return ((dev_t)pst.pst_text.psf_fsid.psfs_id == esb->st_dev &&
(ino_t)pst.pst_text.psf_fileid == esb->st_ino);
}
#elif defined(OS_FreeBSD)
static bool
pid_is_exec(pid_t pid, const struct stat *esb)
{
struct stat sb;
int error, mib[4];
size_t len;
char pathname[PATH_MAX];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PATHNAME;
mib[3] = pid;
len = sizeof(pathname);
error = sysctl(mib, 4, pathname, &len, NULL, 0);
if (error != 0 && errno != ESRCH)
return false;
if (len == 0)
pathname[0] = '\0';
if (stat(pathname, &sb) != 0)
return false;
return (sb.st_dev == esb->st_dev && sb.st_ino == esb->st_ino);
}
#elif defined(HAVE_KVM_H)
static bool
pid_is_exec(pid_t pid, const struct stat *esb)
{
kvm_t *kd;
int argv_len = 0;
struct kinfo_proc *kp;
struct stat sb;
char buf[_POSIX2_LINE_MAX];
char **pid_argv_p;
char *start_argv_0_p, *end_argv_0_p;
bool res = false;
kd = ssd_kvm_open();
kp = ssd_kvm_get_procs(kd, KERN_PROC_PID, pid, NULL);
if (kp == NULL)
goto cleanup;
pid_argv_p = kvm_getargv(kd, kp, argv_len);
if (pid_argv_p == NULL)
errx(1, "%s", kvm_geterr(kd));
/* Find and compare string. */
start_argv_0_p = *pid_argv_p;
/* Find end of argv[0] then copy and cut of str there. */
end_argv_0_p = strchr(*pid_argv_p, ' ');
if (end_argv_0_p == NULL)
/* There seems to be no space, so we have the command
* already in its desired form. */
start_argv_0_p = *pid_argv_p;
else {
/* Tests indicate that this never happens, since
* kvm_getargv itself cuts of tailing stuff. This is
* not what the manpage says, however. */
strncpy(buf, *pid_argv_p, (end_argv_0_p - start_argv_0_p));
buf[(end_argv_0_p - start_argv_0_p) + 1] = '\0';
start_argv_0_p = buf;
}
if (stat(start_argv_0_p, &sb) != 0)
goto cleanup;
res = (sb.st_dev == esb->st_dev && sb.st_ino == esb->st_ino);
cleanup:
kvm_close(kd);
return res;
}
#endif
#if defined(OS_Linux)
static bool
pid_is_child(pid_t pid, pid_t ppid)
{
const char *ppid_str;
pid_t proc_ppid;
int rc;
ppid_str = proc_status_field(pid, "PPid:");
if (ppid_str == NULL)
return false;
rc = parse_pid(ppid_str, &proc_ppid);
if (rc < 0)
return false;
return proc_ppid == ppid;
}
#elif defined(OS_Hurd)
static bool
pid_is_child(pid_t pid, pid_t ppid)
{
struct proc_stat *ps;
struct procinfo *pi;
ps = get_proc_stat(pid, PSTAT_PROC_INFO);
if (ps == NULL)
return false;
pi = proc_stat_proc_info(ps);
return pi->ppid == ppid;
}
#elif defined(OS_Darwin)
static bool
pid_is_child(pid_t pid, pid_t ppid)
{
struct proc_bsdinfo info;
if (proc_pidinfo(pid, PROC_PIDTBSDINFO, 0, &info, sizeof(info)) < 0)
return false;
return (pid_t)info.pbi_ppid == ppid;
}
#elif defined(OS_AIX)
static bool
pid_is_child(pid_t pid, pid_t ppid)
{
struct psinfo psi;
if (!proc_get_psinfo(pid, &psi))
return false;
return (pid_t)psi.pr_ppid == ppid;
}
#elif defined(OS_HPUX)
static bool
pid_is_child(pid_t pid, pid_t ppid)
{
struct pst_status pst;
if (pstat_getproc(&pst, sizeof(pst), (size_t)0, (int)pid) < 0)
return false;
return pst.pst_ppid == ppid;
}
#elif defined(OS_FreeBSD)
static bool
pid_is_child(pid_t pid, pid_t ppid)
{
struct kinfo_proc kp;
int rc, mib[4];
size_t len;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = pid;
len = sizeof(kp);
rc = sysctl(mib, 4, &kp, &len, NULL, 0);
if (rc != 0 && errno != ESRCH)
return false;
if (len == 0 || len != sizeof(kp))
return false;
return kp.ki_ppid == ppid;
}
#elif defined(HAVE_KVM_H)
static bool
pid_is_child(pid_t pid, pid_t ppid)
{
kvm_t *kd;
struct kinfo_proc *kp;
pid_t proc_ppid;
bool res = false;
kd = ssd_kvm_open();
kp = ssd_kvm_get_procs(kd, KERN_PROC_PID, pid, NULL);
if (kp == NULL)
goto cleanup;
#if defined(OS_FreeBSD)
proc_ppid = kp->ki_ppid;
#elif defined(OS_OpenBSD)
proc_ppid = kp->p_ppid;
#elif defined(OS_DragonFlyBSD)
proc_ppid = kp->kp_ppid;
#else
proc_ppid = kp->kp_proc.p_ppid;
#endif
res = (proc_ppid == ppid);
cleanup:
kvm_close(kd);
return res;
}
#endif
#if defined(OS_Linux)
static bool
pid_is_user(pid_t pid, uid_t uid)
{
struct stat sb;
char buf[32];
sprintf(buf, "/proc/%d", pid);
if (stat(buf, &sb) != 0)
return false;
return (sb.st_uid == uid);
}
#elif defined(OS_Hurd)
static bool
pid_is_user(pid_t pid, uid_t uid)
{
struct proc_stat *ps;
ps = get_proc_stat(pid, PSTAT_OWNER_UID);
return ps && (uid_t)proc_stat_owner_uid(ps) == uid;
}
#elif defined(OS_Darwin)
static bool
pid_is_user(pid_t pid, uid_t uid)
{
struct proc_bsdinfo info;
if (proc_pidinfo(pid, PROC_PIDTBSDINFO, 0, &info, sizeof(info)) < 0)
return false;
return info.pbi_ruid == uid;
}
#elif defined(OS_AIX)
static bool
pid_is_user(pid_t pid, uid_t uid)
{
struct psinfo psi;
if (!proc_get_psinfo(pid, &psi))
return false;
return psi.pr_uid == uid;
}
#elif defined(OS_HPUX)
static bool
pid_is_user(pid_t pid, uid_t uid)
{
struct pst_status pst;
if (pstat_getproc(&pst, sizeof(pst), (size_t)0, (int)pid) < 0)
return false;
return ((uid_t)pst.pst_uid == uid);
}
#elif defined(OS_FreeBSD)
static bool
pid_is_user(pid_t pid, uid_t uid)
{
struct kinfo_proc kp;
int rc, mib[4];
size_t len;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = pid;
len = sizeof(kp);
rc = sysctl(mib, 4, &kp, &len, NULL, 0);
if (rc != 0 && errno != ESRCH)
return false;
if (len == 0 || len != sizeof(kp))
return false;
return kp.ki_ruid == uid;
}
#elif defined(HAVE_KVM_H)
static bool
pid_is_user(pid_t pid, uid_t uid)
{
kvm_t *kd;
uid_t proc_uid;
struct kinfo_proc *kp;
bool res = false;
kd = ssd_kvm_open();
kp = ssd_kvm_get_procs(kd, KERN_PROC_PID, pid, NULL);
if (kp == NULL)
goto cleanup;
#if defined(OS_FreeBSD)
proc_uid = kp->ki_ruid;
#elif defined(OS_OpenBSD)
proc_uid = kp->p_ruid;
#elif defined(OS_DragonFlyBSD)
proc_uid = kp->kp_ruid;
#elif defined(OS_NetBSD)
proc_uid = kp->kp_eproc.e_pcred.p_ruid;
#else
if (kp->kp_proc.p_cred)
kvm_read(kd, (u_long)&(kp->kp_proc.p_cred->p_ruid),
&proc_uid, sizeof(uid_t));
else
goto cleanup;
#endif
res = (proc_uid == (uid_t)uid);
cleanup:
kvm_close(kd);
return res;
}
#endif
#if defined(OS_Linux)
static bool
pid_is_cmd(pid_t pid, const char *name)
{
const char *comm;
comm = proc_status_field(pid, "Name:");
if (comm == NULL)
return false;
return strcmp(comm, name) == 0;
}
#elif defined(OS_Hurd)
static bool
pid_is_cmd(pid_t pid, const char *name)
{
struct proc_stat *ps;
size_t argv0_len;
const char *argv0;
const char *binary_name;
ps = get_proc_stat(pid, PSTAT_ARGS);
if (ps == NULL)
return false;
argv0 = proc_stat_args(ps);
argv0_len = strlen(argv0) + 1;
binary_name = basename(argv0);
if (strcmp(binary_name, name) == 0)
return true;
/* XXX: This is all kinds of ugly, but on the Hurd there's no way to
* know the command name of a process, so we have to try to match
* also on argv[1] for the case of an interpreted script. */
if (proc_stat_args_len(ps) > argv0_len) {
const char *script_name = basename(argv0 + argv0_len);
return strcmp(script_name, name) == 0;
}
return false;
}
#elif defined(OS_AIX)
static bool
pid_is_cmd(pid_t pid, const char *name)
{
struct psinfo psi;
if (!proc_get_psinfo(pid, &psi))
return false;
return strcmp(psi.pr_fname, name) == 0;
}
#elif defined(OS_HPUX)
static bool
pid_is_cmd(pid_t pid, const char *name)
{
struct pst_status pst;
if (pstat_getproc(&pst, sizeof(pst), (size_t)0, (int)pid) < 0)
return false;
return (strcmp(pst.pst_ucomm, name) == 0);
}
#elif defined(OS_Darwin)
static bool
pid_is_cmd(pid_t pid, const char *name)
{
char pathname[_POSIX_PATH_MAX];
if (proc_pidpath(pid, pathname, sizeof(pathname)) < 0)
return false;
return strcmp(pathname, name) == 0;
}
#elif defined(OS_FreeBSD)
static bool
pid_is_cmd(pid_t pid, const char *name)
{
struct kinfo_proc kp;
int rc, mib[4];
size_t len;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = pid;
len = sizeof(kp);
rc = sysctl(mib, 4, &kp, &len, NULL, 0);
if (rc != 0 && errno != ESRCH)
return false;
if (len == 0 || len != sizeof(kp))
return false;
return strcmp(kp.ki_comm, name) == 0;
}
#elif defined(HAVE_KVM_H)
static bool
pid_is_cmd(pid_t pid, const char *name)
{
kvm_t *kd;
struct kinfo_proc *kp;
char *process_name;
bool res = false;
kd = ssd_kvm_open();
kp = ssd_kvm_get_procs(kd, KERN_PROC_PID, pid, NULL);
if (kp == NULL)
goto cleanup;
#if defined(OS_FreeBSD)
process_name = kp->ki_comm;
#elif defined(OS_OpenBSD)
process_name = kp->p_comm;
#elif defined(OS_DragonFlyBSD)
process_name = kp->kp_comm;
#else
process_name = kp->kp_proc.p_comm;
#endif
res = (strcmp(name, process_name) == 0);
cleanup:
kvm_close(kd);
return res;
}
#endif
#if defined(OS_Hurd)
static bool
pid_is_running(pid_t pid)
{
return get_proc_stat(pid, 0) != NULL;
}
#else /* !OS_Hurd */
static bool
pid_is_running(pid_t pid)
{
if (kill(pid, 0) == 0 || errno == EPERM)
return true;
else if (errno == ESRCH)
return false;
else
fatal("error checking pid %u status", pid);
}
#endif
static enum status_code
pid_check(pid_t pid)
{
if (execname && !pid_is_exec(pid, &exec_stat))
return STATUS_DEAD;
if (match_ppid > 0 && !pid_is_child(pid, match_ppid))
return STATUS_DEAD;
if (userspec && !pid_is_user(pid, user_id))
return STATUS_DEAD;
if (cmdname && !pid_is_cmd(pid, cmdname))
return STATUS_DEAD;
if (action != ACTION_STOP && !pid_is_running(pid))
return STATUS_DEAD;
pid_list_push(&found, pid);
return STATUS_OK;
}
static enum status_code
do_pidfile(const char *name)
{
FILE *f;
static pid_t pid = 0;
if (pid)
return pid_check(pid);
f = fopen(name, "r");
if (f) {
enum status_code pid_status;
if (fscanf(f, "%d", &pid) == 1)
pid_status = pid_check(pid);
else
pid_status = STATUS_UNKNOWN;
fclose(f);
if (pid_status == STATUS_DEAD)
return STATUS_DEAD_PIDFILE;
else
return pid_status;
} else if (errno == ENOENT)
return STATUS_DEAD;
else
fatal("unable to open pidfile %s", name);
}
#if defined(OS_Linux) || defined(OS_Solaris) || defined(OS_AIX)
static enum status_code
do_procinit(void)
{
DIR *procdir;
struct dirent *entry;
int foundany;
pid_t pid;
enum status_code prog_status = STATUS_DEAD;
procdir = opendir("/proc");
if (!procdir)
fatal("unable to opendir /proc");
foundany = 0;
while ((entry = readdir(procdir)) != NULL) {
enum status_code pid_status;
if (sscanf(entry->d_name, "%d", &pid) != 1)
continue;
foundany++;
pid_status = pid_check(pid);
if (pid_status < prog_status)
prog_status = pid_status;
}
closedir(procdir);
if (!foundany)
fatal("nothing in /proc - not mounted?");
return prog_status;
}
#elif defined(OS_Hurd)
static int
check_proc_stat(struct proc_stat *ps)
{
pid_check(proc_stat_pid(ps));
return 0;
}
static enum status_code
do_procinit(void)
{
if (!procset)
init_procset();
proc_stat_list_for_each(procset, check_proc_stat);
if (found)
return STATUS_OK;
else
return STATUS_DEAD;
}
#elif defined(OS_Darwin)
static enum status_code
do_procinit(void)
{
pid_t *pid_buf;
int i, npids, pid_bufsize;
enum status_code prog_status = STATUS_DEAD;
npids = proc_listallpids(NULL, 0);
if (npids == 0)
return STATUS_UNKNOWN;
/* Try to avoid sudden changes in number of PIDs. */
npids += 4096;
pid_bufsize = sizeof(pid_t) * npids;
pid_buf = xmalloc(pid_bufsize);
npids = proc_listallpids(pid_buf, pid_bufsize);
if (npids == 0)
return STATUS_UNKNOWN;
for (i = 0; i < npids; i++) {
enum status_code pid_status;
pid_status = pid_check(pid_buf[i]);
if (pid_status < prog_status)
prog_status = pid_status;
}
free(pid_buf);
return prog_status;
}
#elif defined(OS_HPUX)
static enum status_code
do_procinit(void)
{
struct pst_status pst[10];
int i, count;
int idx = 0;
enum status_code prog_status = STATUS_DEAD;
while ((count = pstat_getproc(pst, sizeof(pst[0]), 10, idx)) > 0) {
enum status_code pid_status;
for (i = 0; i < count; i++) {
pid_status = pid_check(pst[i].pst_pid);
if (pid_status < prog_status)
prog_status = pid_status;
}
idx = pst[count - 1].pst_idx + 1;
}
return prog_status;
}
#elif defined(OS_FreeBSD)
static enum status_code
do_procinit(void)
{
struct kinfo_proc *kp;
int rc, mib[3];
size_t len = 0;
int nentries, i;
enum status_code prog_status = STATUS_DEAD;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PROC;
rc = sysctl(mib, 3, NULL, &len, NULL, 0);
if (rc != 0 && errno != ESRCH)
return STATUS_UNKNOWN;
if (len == 0)
return STATUS_UNKNOWN;
kp = xmalloc(len);
rc = sysctl(mib, 3, kp, &len, NULL, 0);
if (rc != 0 && errno != ESRCH)
return STATUS_UNKNOWN;
if (len == 0)
return STATUS_UNKNOWN;
nentries = len / sizeof(*kp);
for (i = 0; i < nentries; i++) {
enum status_code pid_status;
pid_status = pid_check(kp[i].ki_pid);
if (pid_status < prog_status)
prog_status = pid_status;
}
free(kp);
return prog_status;
}
#elif defined(HAVE_KVM_H)
static enum status_code
do_procinit(void)
{
kvm_t *kd;
int nentries, i;
struct kinfo_proc *kp;
enum status_code prog_status = STATUS_DEAD;
kd = ssd_kvm_open();
kp = ssd_kvm_get_procs(kd, KERN_PROC_ALL, 0, &nentries);
for (i = 0; i < nentries; i++) {
enum status_code pid_status;
pid_t pid;
#if defined(OS_FreeBSD)
pid = kp[i].ki_pid;
#elif defined(OS_OpenBSD)
pid = kp[i].p_pid;
#elif defined(OS_DragonFlyBSD)
pid = kp[i].kp_pid;
#else
pid = kp[i].kp_proc.p_pid;
#endif
pid_status = pid_check(pid);
if (pid_status < prog_status)
prog_status = pid_status;
}
kvm_close(kd);
return prog_status;
}
#endif
static enum status_code
do_findprocs(void)
{
pid_list_free(&found);
if (match_pid > 0)
return pid_check(match_pid);
else if (pidfile)
return do_pidfile(pidfile);
else
return do_procinit();
}
static int
do_start(int argc, char **argv)
{
int devnull_fd = -1;
gid_t rgid;
uid_t ruid;
do_findprocs();
if (found) {
if (quietmode <= 0)
printf("%s already running.\n", execname ? execname : "process");
return exitnodo;
}
if (testmode && quietmode <= 0) {
printf("Would start %s ", startas);
while (argc-- > 0)
printf("%s ", *argv++);
if (changeuser != NULL) {
printf(" (as user %s[%d]", changeuser, runas_uid);
if (changegroup != NULL)
printf(", and group %s[%d])", changegroup, runas_gid);
else
printf(")");
}
if (changeroot != NULL)
printf(" in directory %s", changeroot);
if (nicelevel)
printf(", and add %i to the priority", nicelevel);
if (proc_sched)
printf(", with scheduling policy %s with priority %i",
proc_sched->policy_name, proc_sched->priority);
if (io_sched)
printf(", with IO scheduling class %s with priority %i",
io_sched->policy_name, io_sched->priority);
printf(".\n");
}
if (testmode)
return 0;
if (quietmode < 0)
printf("Starting %s...\n", startas);
*--argv = startas;
if (background)
/* Ok, we need to detach this process. */
daemonize();
else if (mpidfile && pidfile != NULL)
/* User wants _us_ to make the pidfile, but detach themself! */
write_pidfile(pidfile, getpid());
if (background && close_io) {
devnull_fd = open("/dev/null", O_RDWR);
if (devnull_fd < 0)
fatal("unable to open '%s'", "/dev/null");
}
if (nicelevel) {
errno = 0;
if ((nice(nicelevel) == -1) && (errno != 0))
fatal("unable to alter nice level by %i", nicelevel);
}
if (proc_sched)
set_proc_schedule(proc_sched);
if (io_sched)
set_io_schedule(io_sched);
if (umask_value >= 0)
umask(umask_value);
if (changeroot != NULL) {
if (chdir(changeroot) < 0)
fatal("unable to chdir() to %s", changeroot);
if (chroot(changeroot) < 0)
fatal("unable to chroot() to %s", changeroot);
}
if (chdir(changedir) < 0)
fatal("unable to chdir() to %s", changedir);
rgid = getgid();
ruid = getuid();
if (changegroup != NULL) {
if (rgid != (gid_t)runas_gid)
if (setgid(runas_gid))
fatal("unable to set gid to %d", runas_gid);
}
if (changeuser != NULL) {
/* We assume that if our real user and group are the same as
* the ones we should switch to, the supplementary groups
* will be already in place. */
if (rgid != (gid_t)runas_gid || ruid != (uid_t)runas_uid)
if (initgroups(changeuser, runas_gid))
fatal("unable to set initgroups() with gid %d",
runas_gid);
if (ruid != (uid_t)runas_uid)
if (setuid(runas_uid))
fatal("unable to set uid to %s", changeuser);
}
if (background && close_io) {
int i;
dup2(devnull_fd, 0); /* stdin */
dup2(devnull_fd, 1); /* stdout */
dup2(devnull_fd, 2); /* stderr */
/* Now close all extra fds. */
for (i = get_open_fd_max() - 1; i >= 3; --i)
close(i);
}
execv(startas, argv);
fatal("unable to start %s", startas);
}
static void
do_stop(int sig_num, int *n_killed, int *n_notkilled)
{
struct pid_list *p;
do_findprocs();
*n_killed = 0;
*n_notkilled = 0;
if (!found)
return;
pid_list_free(&killed);
for (p = found; p; p = p->next) {
if (testmode) {
if (quietmode <= 0)
printf("Would send signal %d to %d.\n",
sig_num, p->pid);
(*n_killed)++;
} else if (kill(p->pid, sig_num) == 0) {
pid_list_push(&killed, p->pid);
(*n_killed)++;
} else {
if (sig_num)
warning("failed to kill %d: %s\n",
p->pid, strerror(errno));
(*n_notkilled)++;
}
}
}
static void
do_stop_summary(int retry_nr)
{
struct pid_list *p;
if (quietmode >= 0 || !killed)
return;
printf("Stopped %s (pid", what_stop);
for (p = killed; p; p = p->next)
printf(" %d", p->pid);
putchar(')');
if (retry_nr > 0)
printf(", retry #%d", retry_nr);
printf(".\n");
}
static void DPKG_ATTR_PRINTF(1)
set_what_stop(const char *format, ...)
{
va_list arglist;
int rc;
va_start(arglist, format);
rc = vasprintf(&what_stop, format, arglist);
va_end(arglist);
if (rc < 0)
fatal("cannot allocate formatted string");
}
/*
* We want to keep polling for the processes, to see if they've exited, or
* until the timeout expires.
*
* This is a somewhat complicated algorithm to try to ensure that we notice
* reasonably quickly when all the processes have exited, but don't spend
* too much CPU time polling. In particular, on a fast machine with
* quick-exiting daemons we don't want to delay system shutdown too much,
* whereas on a slow one, or where processes are taking some time to exit,
* we want to increase the polling interval.
*
* The algorithm is as follows: we measure the elapsed time it takes to do
* one poll(), and wait a multiple of this time for the next poll. However,
* if that would put us past the end of the timeout period we wait only as
* long as the timeout period, but in any case we always wait at least
* MIN_POLL_INTERVAL (20ms). The multiple (ratio) starts out as 2, and
* increases by 1 for each poll to a maximum of 10; so we use up to between
* 30% and 10% of the machine's resources (assuming a few reasonable things
* about system performance).
*/
static bool
do_stop_timeout(int timeout, int *n_killed, int *n_notkilled)
{
struct timespec stopat, before, after, interval, maxinterval;
int rc, ratio;
timespec_gettime(&stopat);
stopat.tv_sec += timeout;
ratio = 1;
for (;;) {
timespec_gettime(&before);
if (timespec_cmp(&before, &stopat, >))
return false;
do_stop(0, n_killed, n_notkilled);
if (!*n_killed)
return true;
timespec_gettime(&after);
if (!timespec_cmp(&after, &stopat, <))
return false;
if (ratio < 10)
ratio++;
timespec_sub(&stopat, &after, &maxinterval);
timespec_sub(&after, &before, &interval);
timespec_mul(&interval, ratio);
if (interval.tv_sec < 0 || interval.tv_nsec < 0)
interval.tv_sec = interval.tv_nsec = 0;
if (timespec_cmp(&interval, &maxinterval, >))
interval = maxinterval;
if (interval.tv_sec == 0 &&
interval.tv_nsec <= MIN_POLL_INTERVAL)
interval.tv_nsec = MIN_POLL_INTERVAL;
rc = pselect(0, NULL, NULL, NULL, &interval, NULL);
if (rc < 0 && errno != EINTR)
fatal("select() failed for pause");
}
}
static int
finish_stop_schedule(bool anykilled)
{
if (rpidfile && pidfile && !testmode)
remove_pidfile(pidfile);
if (anykilled)
return 0;
if (quietmode <= 0)
printf("No %s found running; none killed.\n", what_stop);
return exitnodo;
}
static int
run_stop_schedule(void)
{
int position, n_killed, n_notkilled, value, retry_nr;
bool anykilled;
if (testmode) {
if (schedule != NULL) {
if (quietmode <= 0)
printf("Ignoring --retry in test mode\n");
schedule = NULL;
}
}
if (cmdname)
set_what_stop("%s", cmdname);
else if (execname)
set_what_stop("%s", execname);
else if (pidfile)
set_what_stop("process in pidfile '%s'", pidfile);
else if (match_pid > 0)
set_what_stop("process with pid %d", match_pid);
else if (match_ppid > 0)
set_what_stop("process(es) with parent pid %d", match_ppid);
else if (userspec)
set_what_stop("process(es) owned by '%s'", userspec);
else
fatal("internal error, no match option, please report");
anykilled = false;
retry_nr = 0;
if (schedule == NULL) {
do_stop(signal_nr, &n_killed, &n_notkilled);
do_stop_summary(0);
if (n_notkilled > 0 && quietmode <= 0)
printf("%d pids were not killed\n", n_notkilled);
if (n_killed)
anykilled = true;
return finish_stop_schedule(anykilled);
}
for (position = 0; position < schedule_length; position++) {
reposition:
value = schedule[position].value;
n_notkilled = 0;
switch (schedule[position].type) {
case sched_goto:
position = value;
goto reposition;
case sched_signal:
do_stop(value, &n_killed, &n_notkilled);
do_stop_summary(retry_nr++);
if (!n_killed)
return finish_stop_schedule(anykilled);
else
anykilled = true;
continue;
case sched_timeout:
if (do_stop_timeout(value, &n_killed, &n_notkilled))
return finish_stop_schedule(anykilled);
else
continue;
default:
assert(!"schedule[].type value must be valid");
}
}
if (quietmode <= 0)
printf("Program %s, %d process(es), refused to die.\n",
what_stop, n_killed);
return 2;
}
int
main(int argc, char **argv)
{
progname = argv[0];
parse_options(argc, argv);
setup_options();
argc -= optind;
argv += optind;
if (action == ACTION_START)
return do_start(argc, argv);
else if (action == ACTION_STOP)
return run_stop_schedule();
else if (action == ACTION_STATUS)
return do_findprocs();
return 0;
}