183 lines
6.1 KiB
ArmAsm
183 lines
6.1 KiB
ArmAsm
|
/* FMA/AVX2 version of IEEE 754 expf.
|
||
|
Copyright (C) 2017 Free Software Foundation, Inc.
|
||
|
This file is part of the GNU C Library.
|
||
|
|
||
|
The GNU C Library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
The GNU C Library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with the GNU C Library; if not, see
|
||
|
<http://www.gnu.org/licenses/>. */
|
||
|
|
||
|
#include <sysdep.h>
|
||
|
|
||
|
/* Short algorithm description:
|
||
|
|
||
|
Let K = 64 (table size).
|
||
|
e^x = 2^(x/log(2)) = 2^n * T[j] * (1 + P(y))
|
||
|
where
|
||
|
x = m*log(2)/K + y, y in [0.0..log(2)/K]
|
||
|
m = n*K + j, m,n,j - signed integer, j in [0..K-1]
|
||
|
values of 2^(j/K) are tabulated as T[j].
|
||
|
|
||
|
P(y) is a minimax polynomial approximation of expf(x)-1
|
||
|
on small interval [0.0..log(2)/K].
|
||
|
|
||
|
P(y) = P3*y*y*y*y + P2*y*y*y + P1*y*y + P0*y, calculated as
|
||
|
z = y*y; P(y) = (P3*z + P1)*z + (P2*z + P0)*y
|
||
|
|
||
|
Special cases:
|
||
|
expf(NaN) = NaN
|
||
|
expf(+INF) = +INF
|
||
|
expf(-INF) = 0
|
||
|
expf(x) = 1 for subnormals
|
||
|
for finite argument, only expf(0)=1 is exact
|
||
|
expf(x) overflows if x>88.7228317260742190
|
||
|
expf(x) underflows if x<-103.972076416015620
|
||
|
*/
|
||
|
|
||
|
.section .text.fma,"ax",@progbits
|
||
|
ENTRY(__ieee754_expf_fma)
|
||
|
/* Input: single precision x in %xmm0 */
|
||
|
vcvtss2sd %xmm0, %xmm0, %xmm1 /* Convert x to double precision */
|
||
|
vmovd %xmm0, %ecx /* Copy x */
|
||
|
vmovsd L(DP_KLN2)(%rip), %xmm2 /* DP K/log(2) */
|
||
|
vfmadd213sd L(DP_RD)(%rip), %xmm1, %xmm2 /* DP x*K/log(2)+RD */
|
||
|
vmovsd L(DP_P2)(%rip), %xmm3 /* DP P2 */
|
||
|
movl %ecx, %eax /* x */
|
||
|
andl $0x7fffffff, %ecx /* |x| */
|
||
|
lea L(DP_T)(%rip), %rsi /* address of table T[j] */
|
||
|
vmovsd L(DP_P3)(%rip), %xmm4 /* DP P3 */
|
||
|
|
||
|
cmpl $0x42ad496b, %ecx /* |x|<125*log(2) ? */
|
||
|
jae L(special_paths_fma)
|
||
|
|
||
|
/* Here if |x|<125*log(2) */
|
||
|
cmpl $0x31800000, %ecx /* |x|<2^(-28) ? */
|
||
|
jb L(small_arg_fma)
|
||
|
|
||
|
/* Main path: here if 2^(-28)<=|x|<125*log(2) */
|
||
|
/* %xmm2 = SP x*K/log(2)+RS */
|
||
|
vmovd %xmm2, %eax
|
||
|
vsubsd L(DP_RD)(%rip), %xmm2, %xmm2 /* DP t=round(x*K/log(2)) */
|
||
|
movl %eax, %edx /* n*K+j with trash */
|
||
|
andl $0x3f, %eax /* bits of j */
|
||
|
vmovsd (%rsi,%rax,8), %xmm5 /* T[j] */
|
||
|
andl $0xffffffc0, %edx /* bits of n */
|
||
|
|
||
|
vfmadd132sd L(DP_NLN2K)(%rip), %xmm1, %xmm2 /* DP y=x-t*log(2)/K */
|
||
|
vmulsd %xmm2, %xmm2, %xmm6 /* DP z=y*y */
|
||
|
|
||
|
|
||
|
vfmadd213sd L(DP_P1)(%rip), %xmm6, %xmm4 /* DP P3*z + P1 */
|
||
|
vfmadd213sd L(DP_P0)(%rip), %xmm6, %xmm3 /* DP P2*z+P0 */
|
||
|
|
||
|
addl $0x1fc0, %edx /* bits of n + SP exponent bias */
|
||
|
shll $17, %edx /* SP 2^n */
|
||
|
vmovd %edx, %xmm1 /* SP 2^n */
|
||
|
|
||
|
vmulsd %xmm6, %xmm4, %xmm4 /* DP (P3*z+P1)*z */
|
||
|
|
||
|
vfmadd213sd %xmm4, %xmm3, %xmm2 /* DP P(Y) (P2*z+P0)*y */
|
||
|
vfmadd213sd %xmm5, %xmm5, %xmm2 /* DP T[j]*(P(y)+1) */
|
||
|
vcvtsd2ss %xmm2, %xmm2, %xmm0 /* SP T[j]*(P(y)+1) */
|
||
|
vmulss %xmm1, %xmm0, %xmm0 /* SP result=2^n*(T[j]*(P(y)+1)) */
|
||
|
ret
|
||
|
|
||
|
.p2align 4
|
||
|
L(small_arg_fma):
|
||
|
/* Here if 0<=|x|<2^(-28) */
|
||
|
vaddss L(SP_ONE)(%rip), %xmm0, %xmm0 /* 1.0 + x */
|
||
|
/* Return 1.0 with inexact raised, except for x==0 */
|
||
|
ret
|
||
|
|
||
|
.p2align 4
|
||
|
L(special_paths_fma):
|
||
|
/* Here if 125*log(2)<=|x| */
|
||
|
shrl $31, %eax /* Get sign bit of x, and depending on it: */
|
||
|
lea L(SP_RANGE)(%rip), %rdx /* load over/underflow bound */
|
||
|
cmpl (%rdx,%rax,4), %ecx /* |x|<under/overflow bound ? */
|
||
|
jbe L(near_under_or_overflow_fma)
|
||
|
|
||
|
/* Here if |x|>under/overflow bound */
|
||
|
cmpl $0x7f800000, %ecx /* |x| is finite ? */
|
||
|
jae L(arg_inf_or_nan_fma)
|
||
|
|
||
|
/* Here if |x|>under/overflow bound, and x is finite */
|
||
|
testl %eax, %eax /* sign of x nonzero ? */
|
||
|
je L(res_overflow_fma)
|
||
|
|
||
|
/* Here if -inf<x<underflow bound (x<0) */
|
||
|
vmovss L(SP_SMALL)(%rip), %xmm0/* load small value 2^(-100) */
|
||
|
vmulss %xmm0, %xmm0, %xmm0 /* Return underflowed result (zero or subnormal) */
|
||
|
ret
|
||
|
|
||
|
.p2align 4
|
||
|
L(res_overflow_fma):
|
||
|
/* Here if overflow bound<x<inf (x>0) */
|
||
|
vmovss L(SP_LARGE)(%rip), %xmm0/* load large value 2^100 */
|
||
|
vmulss %xmm0, %xmm0, %xmm0 /* Return overflowed result (Inf or max normal) */
|
||
|
ret
|
||
|
|
||
|
.p2align 4
|
||
|
L(arg_inf_or_nan_fma):
|
||
|
/* Here if |x| is Inf or NAN */
|
||
|
jne L(arg_nan_fma) /* |x| is Inf ? */
|
||
|
|
||
|
/* Here if |x| is Inf */
|
||
|
lea L(SP_INF_0)(%rip), %rdx /* depending on sign of x: */
|
||
|
vmovss (%rdx,%rax,4), %xmm0 /* return zero or Inf */
|
||
|
ret
|
||
|
|
||
|
.p2align 4
|
||
|
L(arg_nan_fma):
|
||
|
/* Here if |x| is NaN */
|
||
|
vaddss %xmm0, %xmm0, %xmm0 /* Return x+x (raise invalid) */
|
||
|
ret
|
||
|
|
||
|
.p2align 4
|
||
|
L(near_under_or_overflow_fma):
|
||
|
/* Here if 125*log(2)<=|x|<under/overflow bound */
|
||
|
vmovd %xmm2, %eax /* bits of n*K+j with trash */
|
||
|
vsubsd L(DP_RD)(%rip), %xmm2, %xmm2 /* DP t=round(x*K/log(2)) */
|
||
|
movl %eax, %edx /* n*K+j with trash */
|
||
|
andl $0x3f, %eax /* bits of j */
|
||
|
vmulsd L(DP_NLN2K)(%rip),%xmm2, %xmm2/* DP -t*log(2)/K */
|
||
|
andl $0xffffffc0, %edx /* bits of n */
|
||
|
vaddsd %xmm1, %xmm2, %xmm0 /* DP y=x-t*log(2)/K */
|
||
|
vmulsd %xmm0, %xmm0, %xmm2 /* DP z=y*y */
|
||
|
addl $0xffc0, %edx /* bits of n + DP exponent bias */
|
||
|
vfmadd213sd L(DP_P0)(%rip), %xmm2, %xmm3/* DP P2*z+P0 */
|
||
|
shlq $46, %rdx /* DP 2^n */
|
||
|
vfmadd213sd L(DP_P1)(%rip), %xmm2, %xmm4/* DP P3*z+P1 */
|
||
|
vmovq %rdx, %xmm1 /* DP 2^n */
|
||
|
vmulsd %xmm2, %xmm4, %xmm4 /* DP (P3*z+P1)*z */
|
||
|
vfmadd213sd %xmm4, %xmm3, %xmm0 /* DP (P2*z+P0)*y */
|
||
|
vmovsd (%rsi,%rax,8), %xmm2
|
||
|
vfmadd213sd %xmm2, %xmm2, %xmm0 /* DP T[j]*(P(y)+1) */
|
||
|
vmulsd %xmm1, %xmm0, %xmm0 /* DP result=2^n*(T[j]*(P(y)+1)) */
|
||
|
vcvtsd2ss %xmm0, %xmm0, %xmm0 /* convert result to single precision */
|
||
|
ret
|
||
|
END(__ieee754_expf_fma)
|
||
|
|
||
|
.section .rodata.cst8,"aM",@progbits,8
|
||
|
.p2align 3
|
||
|
L(DP_RD): /* double precision 2^52+2^51 */
|
||
|
.long 0x00000000, 0x43380000
|
||
|
.type L(DP_RD), @object
|
||
|
ASM_SIZE_DIRECTIVE(L(DP_RD))
|
||
|
|
||
|
#define __ieee754_expf __ieee754_expf_sse2
|
||
|
|
||
|
#undef strong_alias
|
||
|
#define strong_alias(ignored1, ignored2)
|
||
|
|
||
|
#include <sysdeps/x86_64/fpu/e_expf.S>
|