/* @(#)s_tanh.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: s_tanh.c,v 1.7 1995/05/10 20:48:22 jtc Exp $";
#endif
/* Tanh(x)
* Return the Hyperbolic Tangent of x
* Method :
* x -x
* e - e
* 0. tanh(x) is defined to be -----------
* e + e
* 1. reduce x to non-negative by tanh(-x) = -tanh(x).
* 2. 0 <= x <= 2**-57 : tanh(x) := x*(one+x)
* -t
* 2**-57 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
* t + 2
* 2
* 1 <= x <= 40.0 : tanh(x) := 1- ----- ; t=expm1(2x)
* 40.0 < x <= INF : tanh(x) := 1.
* Special cases:
* tanh(NaN) is NaN;
* only tanh(0)=0 is exact for finite argument.
#include <float.h>
#include <math.h>
#include <math_private.h>
#include <math_ldbl_opt.h>
static const long double one=1.0L, two=2.0L, tiny = 1.0e-300L;
long double __tanhl(long double x)
{
long double t,z;
int64_t jx,ix;
double xhi;
/* High word of |x|. */
xhi = ldbl_high (x);
EXTRACT_WORDS64 (jx, xhi);
ix = jx&0x7fffffffffffffffLL;
/* x is INF or NaN */
if(ix>=0x7ff0000000000000LL) {
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
else return one/x-one; /* tanh(NaN) = NaN */
}
/* |x| < 40 */
if (ix < 0x4044000000000000LL) { /* |x|<40 */
if (ix == 0)
return x; /* x == +-0 */
if (ix<0x3c60000000000000LL) /* |x|<2**-57 */
math_check_force_underflow (x);
return x; /* tanh(small) = small */
if (ix>=0x3ff0000000000000LL) { /* |x|>=1 */
t = __expm1l(two*fabsl(x));
z = one - two/(t+two);
} else {
t = __expm1l(-two*fabsl(x));
z= -t/(t+two);
/* |x| > 40, return +-1 */
z = one - tiny; /* raised inexact flag */
return (jx>=0)? z: -z;
long_double_symbol (libm, __tanhl, tanhl);