2017-09-04 14:34:04 -03:00
|
|
|
/* Implementation of cbrtl. IBM Extended Precision version.
|
|
|
|
Cephes Math Library Release 2.2: January, 1991
|
|
|
|
Copyright 1984, 1991 by Stephen L. Moshier
|
|
|
|
Adapted for glibc October, 2001.
|
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
|
|
License along with this library; if not, see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
/* This file was copied from sysdeps/ieee754/ldbl-128/e_j0l.c. */
|
2016-07-20 15:20:51 -05:00
|
|
|
|
|
|
|
#define _Float128 long double
|
|
|
|
#define L(x) x ## L
|
|
|
|
|
2017-09-04 14:34:04 -03:00
|
|
|
#include <math_ldbl_opt.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <math_private.h>
|
|
|
|
|
|
|
|
static const _Float128 CBRT2 = L(1.259921049894873164767210607278228350570251);
|
|
|
|
static const _Float128 CBRT4 = L(1.587401051968199474751705639272308260391493);
|
|
|
|
static const _Float128 CBRT2I = L(0.7937005259840997373758528196361541301957467);
|
|
|
|
static const _Float128 CBRT4I = L(0.6299605249474365823836053036391141752851257);
|
|
|
|
|
|
|
|
|
|
|
|
_Float128
|
|
|
|
__cbrtl (_Float128 x)
|
|
|
|
{
|
|
|
|
int e, rem, sign;
|
|
|
|
_Float128 z;
|
|
|
|
|
|
|
|
if (!isfinite (x))
|
|
|
|
return x + x;
|
|
|
|
|
|
|
|
if (x == 0)
|
|
|
|
return (x);
|
|
|
|
|
|
|
|
if (x > 0)
|
|
|
|
sign = 1;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sign = -1;
|
|
|
|
x = -x;
|
|
|
|
}
|
|
|
|
|
|
|
|
z = x;
|
|
|
|
/* extract power of 2, leaving mantissa between 0.5 and 1 */
|
|
|
|
x = __frexpl (x, &e);
|
|
|
|
|
|
|
|
/* Approximate cube root of number between .5 and 1,
|
|
|
|
peak relative error = 1.2e-6 */
|
|
|
|
x = ((((L(1.3584464340920900529734e-1) * x
|
|
|
|
- L(6.3986917220457538402318e-1)) * x
|
|
|
|
+ L(1.2875551670318751538055e0)) * x
|
|
|
|
- L(1.4897083391357284957891e0)) * x
|
|
|
|
+ L(1.3304961236013647092521e0)) * x + L(3.7568280825958912391243e-1);
|
|
|
|
|
|
|
|
/* exponent divided by 3 */
|
|
|
|
if (e >= 0)
|
|
|
|
{
|
|
|
|
rem = e;
|
|
|
|
e /= 3;
|
|
|
|
rem -= 3 * e;
|
|
|
|
if (rem == 1)
|
|
|
|
x *= CBRT2;
|
|
|
|
else if (rem == 2)
|
|
|
|
x *= CBRT4;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{ /* argument less than 1 */
|
|
|
|
e = -e;
|
|
|
|
rem = e;
|
|
|
|
e /= 3;
|
|
|
|
rem -= 3 * e;
|
|
|
|
if (rem == 1)
|
|
|
|
x *= CBRT2I;
|
|
|
|
else if (rem == 2)
|
|
|
|
x *= CBRT4I;
|
|
|
|
e = -e;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* multiply by power of 2 */
|
|
|
|
x = __ldexpl (x, e);
|
|
|
|
|
|
|
|
/* Newton iteration */
|
|
|
|
x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333);
|
|
|
|
x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333);
|
|
|
|
x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333);
|
|
|
|
|
|
|
|
if (sign < 0)
|
|
|
|
x = -x;
|
|
|
|
return (x);
|
|
|
|
}
|
|
|
|
|
2006-01-28 00:15:15 +00:00
|
|
|
long_double_symbol (libm, __cbrtl, cbrtl);
|