/* s_tanl.c -- long double version of s_tan.c.
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
*/
/* @(#)s_tan.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
/* tanl(x)
* Return tangent function of x.
* kernel function:
* __kernel_tanl ... tangent function on [-pi/4,pi/4]
* __ieee754_rem_pio2l ... argument reduction routine
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
#include <errno.h>
#include <math.h>
#include <math_private.h>
#include <math_ldbl_opt.h>
long double __tanl(long double x)
{
long double y[2],z=0.0L;
int64_t n, ix;
double xhi;
/* High word of x. */
xhi = ldbl_high (x);
EXTRACT_WORDS64 (ix, xhi);
/* |x| ~< pi/4 */
ix &= 0x7fffffffffffffffLL;
if(ix <= 0x3fe921fb54442d10LL) return __kernel_tanl(x,z,1);
/* tanl(Inf or NaN) is NaN */
else if (ix>=0x7ff0000000000000LL) {
if (ix == 0x7ff0000000000000LL)
__set_errno (EDOM);
return x-x; /* NaN */
}
/* argument reduction needed */
else {
n = __ieee754_rem_pio2l(x,y);
return __kernel_tanl(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
-1 -- n odd */
long_double_symbol (libm, __tanl, tanl);