Use round-to-nearest internally in jn, test with ALL_RM_TEST (bug 18602).
Some existing jn tests, if run in non-default rounding modes, produce errors above those accepted in glibc, which causes problems for moving tests of jn to use ALL_RM_TEST. This patch makes jn set rounding to-nearest internally, as was done for yn some time ago, then computes the appropriate underflowing value for results that underflowed to zero in to-nearest, and moves the tests to ALL_RM_TEST. It does nothing about the general inaccuracy of Bessel function implementations in glibc, though it should make jn more accurate on average in non-default rounding modes through reduced error accumulation. The recomputation of results that underflowed to zero should as a side-effect fix some cases of bug 16559, where jn just used an exact zero, but that is *not* the goal of this patch and other cases of that bug remain unfixed. (Most of the changes in the patch are reindentation to add new scopes for SET_RESTORE_ROUND*.) Tested for x86_64, x86, powerpc and mips64. [BZ #16559] [BZ #18602] * sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Set round-to-nearest internally then recompute results that underflowed to zero in the original rounding mode. * sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise. * sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise. * sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise * math/libm-test.inc (jn_test): Use ALL_RM_TEST. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
This commit is contained in:
parent
037e4b993f
commit
a8e2112ae3
15
ChangeLog
15
ChangeLog
@ -1,3 +1,18 @@
|
||||
2015-06-25 Joseph Myers <joseph@codesourcery.com>
|
||||
|
||||
[BZ #16559]
|
||||
[BZ #18602]
|
||||
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Set
|
||||
round-to-nearest internally then recompute results that
|
||||
underflowed to zero in the original rounding mode.
|
||||
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
|
||||
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
|
||||
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
|
||||
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise
|
||||
* math/libm-test.inc (jn_test): Use ALL_RM_TEST.
|
||||
* sysdeps/i386/fpu/libm-test-ulps: Update.
|
||||
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
|
||||
|
||||
2015-06-25 Andrew Senkevich <andrew.senkevich@intel.com>
|
||||
|
||||
* NEWS: Fixed description of link with vector math library.
|
||||
|
2
NEWS
2
NEWS
@ -25,7 +25,7 @@ Version 2.22
|
||||
18498, 18507, 18512, 18513, 18519, 18520, 18522, 18527, 18528, 18529,
|
||||
18530, 18532, 18533, 18534, 18536, 18539, 18540, 18542, 18544, 18545,
|
||||
18546, 18547, 18549, 18553, 18558, 18569, 18583, 18585, 18586, 18593,
|
||||
18594.
|
||||
18594, 18602.
|
||||
|
||||
* Cache information can be queried via sysconf() function on s390 e.g. with
|
||||
_SC_LEVEL1_ICACHE_SIZE as argument.
|
||||
|
@ -7486,9 +7486,7 @@ static const struct test_if_f_data jn_test_data[] =
|
||||
static void
|
||||
jn_test (void)
|
||||
{
|
||||
START (jn,, 0);
|
||||
RUN_TEST_LOOP_if_f (jn, jn_test_data, );
|
||||
END;
|
||||
ALL_RM_TEST (jn, 0, jn_test_data, RUN_TEST_LOOP_if_f, END);
|
||||
}
|
||||
|
||||
|
||||
|
@ -1613,6 +1613,30 @@ ifloat: 3
|
||||
ildouble: 4
|
||||
ldouble: 4
|
||||
|
||||
Function: "jn_downward":
|
||||
double: 2
|
||||
float: 3
|
||||
idouble: 2
|
||||
ifloat: 3
|
||||
ildouble: 4
|
||||
ldouble: 4
|
||||
|
||||
Function: "jn_towardzero":
|
||||
double: 2
|
||||
float: 3
|
||||
idouble: 2
|
||||
ifloat: 3
|
||||
ildouble: 5
|
||||
ldouble: 5
|
||||
|
||||
Function: "jn_upward":
|
||||
double: 2
|
||||
float: 3
|
||||
idouble: 2
|
||||
ifloat: 3
|
||||
ildouble: 5
|
||||
ldouble: 5
|
||||
|
||||
Function: "lgamma":
|
||||
double: 1
|
||||
float: 1
|
||||
|
@ -52,7 +52,7 @@ double
|
||||
__ieee754_jn (int n, double x)
|
||||
{
|
||||
int32_t i, hx, ix, lx, sgn;
|
||||
double a, b, temp, di;
|
||||
double a, b, temp, di, ret;
|
||||
double z, w;
|
||||
|
||||
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
||||
@ -75,14 +75,16 @@ __ieee754_jn (int n, double x)
|
||||
return (__ieee754_j1 (x));
|
||||
sgn = (n & 1) & (hx >> 31); /* even n -- 0, odd n -- sign(x) */
|
||||
x = fabs (x);
|
||||
if (__glibc_unlikely ((ix | lx) == 0 || ix >= 0x7ff00000))
|
||||
/* if x is 0 or inf */
|
||||
b = zero;
|
||||
else if ((double) n <= x)
|
||||
{
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if (ix >= 0x52D00000) /* x > 2**302 */
|
||||
{ /* (x >> n**2)
|
||||
{
|
||||
SET_RESTORE_ROUND (FE_TONEAREST);
|
||||
if (__glibc_unlikely ((ix | lx) == 0 || ix >= 0x7ff00000))
|
||||
/* if x is 0 or inf */
|
||||
return sgn == 1 ? -zero : zero;
|
||||
else if ((double) n <= x)
|
||||
{
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if (ix >= 0x52D00000) /* x > 2**302 */
|
||||
{ /* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
@ -95,152 +97,156 @@ __ieee754_jn (int n, double x)
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
double s;
|
||||
double c;
|
||||
__sincos (x, &s, &c);
|
||||
switch (n & 3)
|
||||
{
|
||||
case 0: temp = c + s; break;
|
||||
case 1: temp = -c + s; break;
|
||||
case 2: temp = -c - s; break;
|
||||
case 3: temp = c - s; break;
|
||||
}
|
||||
b = invsqrtpi * temp / __ieee754_sqrt (x);
|
||||
}
|
||||
else
|
||||
{
|
||||
a = __ieee754_j0 (x);
|
||||
b = __ieee754_j1 (x);
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
temp = b;
|
||||
b = b * ((double) (i + i) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ix < 0x3e100000) /* x < 2**-29 */
|
||||
{ /* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
double s;
|
||||
double c;
|
||||
__sincos (x, &s, &c);
|
||||
switch (n & 3)
|
||||
{
|
||||
case 0: temp = c + s; break;
|
||||
case 1: temp = -c + s; break;
|
||||
case 2: temp = -c - s; break;
|
||||
case 3: temp = c - s; break;
|
||||
}
|
||||
b = invsqrtpi * temp / __ieee754_sqrt (x);
|
||||
}
|
||||
else
|
||||
{
|
||||
a = __ieee754_j0 (x);
|
||||
b = __ieee754_j1 (x);
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
temp = b;
|
||||
b = b * ((double) (i + i) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ix < 0x3e100000) /* x < 2**-29 */
|
||||
{ /* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if (n > 33) /* underflow */
|
||||
b = zero;
|
||||
else
|
||||
{
|
||||
temp = x * 0.5; b = temp;
|
||||
for (a = one, i = 2; i <= n; i++)
|
||||
{
|
||||
a *= (double) i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
double t, v;
|
||||
double q0, q1, h, tmp; int32_t k, m;
|
||||
w = (n + n) / (double) x; h = 2.0 / (double) x;
|
||||
q0 = w; z = w + h; q1 = w * z - 1.0; k = 1;
|
||||
while (q1 < 1.0e9)
|
||||
{
|
||||
k += 1; z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n + n;
|
||||
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
|
||||
t = one / (i / x - t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two / x;
|
||||
tmp = tmp * __ieee754_log (fabs (v * tmp));
|
||||
if (tmp < 7.09782712893383973096e+02)
|
||||
{
|
||||
for (i = n - 1, di = (double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = n - 1, di = (double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if (b > 1e100)
|
||||
{
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* j0() and j1() suffer enormous loss of precision at and
|
||||
* near zero; however, we know that their zero points never
|
||||
* coincide, so just choose the one further away from zero.
|
||||
*/
|
||||
z = __ieee754_j0 (x);
|
||||
w = __ieee754_j1 (x);
|
||||
if (fabs (z) >= fabs (w))
|
||||
b = (t * z / b);
|
||||
else
|
||||
b = (t * w / a);
|
||||
}
|
||||
}
|
||||
if (sgn == 1)
|
||||
return -b;
|
||||
else
|
||||
return b;
|
||||
if (n > 33) /* underflow */
|
||||
b = zero;
|
||||
else
|
||||
{
|
||||
temp = x * 0.5; b = temp;
|
||||
for (a = one, i = 2; i <= n; i++)
|
||||
{
|
||||
a *= (double) i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
double t, v;
|
||||
double q0, q1, h, tmp; int32_t k, m;
|
||||
w = (n + n) / (double) x; h = 2.0 / (double) x;
|
||||
q0 = w; z = w + h; q1 = w * z - 1.0; k = 1;
|
||||
while (q1 < 1.0e9)
|
||||
{
|
||||
k += 1; z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n + n;
|
||||
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
|
||||
t = one / (i / x - t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two / x;
|
||||
tmp = tmp * __ieee754_log (fabs (v * tmp));
|
||||
if (tmp < 7.09782712893383973096e+02)
|
||||
{
|
||||
for (i = n - 1, di = (double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = n - 1, di = (double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if (b > 1e100)
|
||||
{
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* j0() and j1() suffer enormous loss of precision at and
|
||||
* near zero; however, we know that their zero points never
|
||||
* coincide, so just choose the one further away from zero.
|
||||
*/
|
||||
z = __ieee754_j0 (x);
|
||||
w = __ieee754_j1 (x);
|
||||
if (fabs (z) >= fabs (w))
|
||||
b = (t * z / b);
|
||||
else
|
||||
b = (t * w / a);
|
||||
}
|
||||
}
|
||||
if (sgn == 1)
|
||||
ret = -b;
|
||||
else
|
||||
ret = b;
|
||||
}
|
||||
if (ret == 0)
|
||||
ret = __copysign (DBL_MIN, ret) * DBL_MIN;
|
||||
return ret;
|
||||
}
|
||||
strong_alias (__ieee754_jn, __jn_finite)
|
||||
|
||||
|
@ -27,6 +27,8 @@ static const float zero = 0.0000000000e+00;
|
||||
float
|
||||
__ieee754_jnf(int n, float x)
|
||||
{
|
||||
float ret;
|
||||
{
|
||||
int32_t i,hx,ix, sgn;
|
||||
float a, b, temp, di;
|
||||
float z, w;
|
||||
@ -47,8 +49,9 @@ __ieee754_jnf(int n, float x)
|
||||
if(n==1) return(__ieee754_j1f(x));
|
||||
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
|
||||
x = fabsf(x);
|
||||
SET_RESTORE_ROUNDF (FE_TONEAREST);
|
||||
if(__builtin_expect(ix==0||ix>=0x7f800000, 0)) /* if x is 0 or inf */
|
||||
b = zero;
|
||||
return sgn == 1 ? -zero : zero;
|
||||
else if((float)n<=x) {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
a = __ieee754_j0f(x);
|
||||
@ -163,7 +166,11 @@ __ieee754_jnf(int n, float x)
|
||||
b = (t * w / a);
|
||||
}
|
||||
}
|
||||
if(sgn==1) return -b; else return b;
|
||||
if(sgn==1) ret = -b; else ret = b;
|
||||
}
|
||||
if (ret == 0)
|
||||
ret = __copysignf (FLT_MIN, ret) * FLT_MIN;
|
||||
return ret;
|
||||
}
|
||||
strong_alias (__ieee754_jnf, __jnf_finite)
|
||||
|
||||
|
@ -73,7 +73,7 @@ __ieee754_jnl (int n, long double x)
|
||||
{
|
||||
u_int32_t se;
|
||||
int32_t i, ix, sgn;
|
||||
long double a, b, temp, di;
|
||||
long double a, b, temp, di, ret;
|
||||
long double z, w;
|
||||
ieee854_long_double_shape_type u;
|
||||
|
||||
@ -106,192 +106,198 @@ __ieee754_jnl (int n, long double x)
|
||||
sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
|
||||
x = fabsl (x);
|
||||
|
||||
if (x == 0.0L || ix >= 0x7fff0000) /* if x is 0 or inf */
|
||||
b = zero;
|
||||
else if ((long double) n <= x)
|
||||
{
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if (ix >= 0x412D0000)
|
||||
{ /* x > 2**302 */
|
||||
{
|
||||
SET_RESTORE_ROUNDL (FE_TONEAREST);
|
||||
if (x == 0.0L || ix >= 0x7fff0000) /* if x is 0 or inf */
|
||||
return sgn == 1 ? -zero : zero;
|
||||
else if ((long double) n <= x)
|
||||
{
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if (ix >= 0x412D0000)
|
||||
{ /* x > 2**302 */
|
||||
|
||||
/* ??? Could use an expansion for large x here. */
|
||||
/* ??? Could use an expansion for large x here. */
|
||||
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
long double s;
|
||||
long double c;
|
||||
__sincosl (x, &s, &c);
|
||||
switch (n & 3)
|
||||
{
|
||||
case 0:
|
||||
temp = c + s;
|
||||
break;
|
||||
case 1:
|
||||
temp = -c + s;
|
||||
break;
|
||||
case 2:
|
||||
temp = -c - s;
|
||||
break;
|
||||
case 3:
|
||||
temp = c - s;
|
||||
break;
|
||||
}
|
||||
b = invsqrtpi * temp / __ieee754_sqrtl (x);
|
||||
}
|
||||
else
|
||||
{
|
||||
a = __ieee754_j0l (x);
|
||||
b = __ieee754_j1l (x);
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
temp = b;
|
||||
b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ix < 0x3fc60000)
|
||||
{ /* x < 2**-57 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if (n >= 400) /* underflow, result < 10^-4952 */
|
||||
b = zero;
|
||||
else
|
||||
{
|
||||
temp = x * 0.5;
|
||||
b = temp;
|
||||
for (a = one, i = 2; i <= n; i++)
|
||||
{
|
||||
a *= (long double) i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
long double t, v;
|
||||
long double q0, q1, h, tmp;
|
||||
int32_t k, m;
|
||||
w = (n + n) / (long double) x;
|
||||
h = 2.0L / (long double) x;
|
||||
q0 = w;
|
||||
z = w + h;
|
||||
q1 = w * z - 1.0L;
|
||||
k = 1;
|
||||
while (q1 < 1.0e17L)
|
||||
{
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n + n;
|
||||
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
|
||||
t = one / (i / x - t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two / x;
|
||||
tmp = tmp * __ieee754_logl (fabsl (v * tmp));
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
long double s;
|
||||
long double c;
|
||||
__sincosl (x, &s, &c);
|
||||
switch (n & 3)
|
||||
{
|
||||
case 0:
|
||||
temp = c + s;
|
||||
break;
|
||||
case 1:
|
||||
temp = -c + s;
|
||||
break;
|
||||
case 2:
|
||||
temp = -c - s;
|
||||
break;
|
||||
case 3:
|
||||
temp = c - s;
|
||||
break;
|
||||
}
|
||||
b = invsqrtpi * temp / __ieee754_sqrtl (x);
|
||||
}
|
||||
else
|
||||
{
|
||||
a = __ieee754_j0l (x);
|
||||
b = __ieee754_j1l (x);
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
temp = b;
|
||||
b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ix < 0x3fc60000)
|
||||
{ /* x < 2**-57 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if (n >= 400) /* underflow, result < 10^-4952 */
|
||||
b = zero;
|
||||
else
|
||||
{
|
||||
temp = x * 0.5;
|
||||
b = temp;
|
||||
for (a = one, i = 2; i <= n; i++)
|
||||
{
|
||||
a *= (long double) i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
long double t, v;
|
||||
long double q0, q1, h, tmp;
|
||||
int32_t k, m;
|
||||
w = (n + n) / (long double) x;
|
||||
h = 2.0L / (long double) x;
|
||||
q0 = w;
|
||||
z = w + h;
|
||||
q1 = w * z - 1.0L;
|
||||
k = 1;
|
||||
while (q1 < 1.0e17L)
|
||||
{
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n + n;
|
||||
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
|
||||
t = one / (i / x - t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two / x;
|
||||
tmp = tmp * __ieee754_logl (fabsl (v * tmp));
|
||||
|
||||
if (tmp < 1.1356523406294143949491931077970765006170e+04L)
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if (b > 1e100L)
|
||||
{
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* j0() and j1() suffer enormous loss of precision at and
|
||||
* near zero; however, we know that their zero points never
|
||||
* coincide, so just choose the one further away from zero.
|
||||
*/
|
||||
z = __ieee754_j0l (x);
|
||||
w = __ieee754_j1l (x);
|
||||
if (fabsl (z) >= fabsl (w))
|
||||
b = (t * z / b);
|
||||
else
|
||||
b = (t * w / a);
|
||||
}
|
||||
}
|
||||
if (sgn == 1)
|
||||
return -b;
|
||||
else
|
||||
return b;
|
||||
if (tmp < 1.1356523406294143949491931077970765006170e+04L)
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if (b > 1e100L)
|
||||
{
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* j0() and j1() suffer enormous loss of precision at and
|
||||
* near zero; however, we know that their zero points never
|
||||
* coincide, so just choose the one further away from zero.
|
||||
*/
|
||||
z = __ieee754_j0l (x);
|
||||
w = __ieee754_j1l (x);
|
||||
if (fabsl (z) >= fabsl (w))
|
||||
b = (t * z / b);
|
||||
else
|
||||
b = (t * w / a);
|
||||
}
|
||||
}
|
||||
if (sgn == 1)
|
||||
ret = -b;
|
||||
else
|
||||
ret = b;
|
||||
}
|
||||
if (ret == 0)
|
||||
ret = __copysignl (LDBL_MIN, ret) * LDBL_MIN;
|
||||
return ret;
|
||||
}
|
||||
strong_alias (__ieee754_jnl, __jnl_finite)
|
||||
|
||||
|
@ -73,7 +73,7 @@ __ieee754_jnl (int n, long double x)
|
||||
{
|
||||
uint32_t se, lx;
|
||||
int32_t i, ix, sgn;
|
||||
long double a, b, temp, di;
|
||||
long double a, b, temp, di, ret;
|
||||
long double z, w;
|
||||
double xhi;
|
||||
|
||||
@ -106,192 +106,198 @@ __ieee754_jnl (int n, long double x)
|
||||
sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */
|
||||
x = fabsl (x);
|
||||
|
||||
if (x == 0.0L || ix >= 0x7ff00000) /* if x is 0 or inf */
|
||||
b = zero;
|
||||
else if ((long double) n <= x)
|
||||
{
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if (ix >= 0x52d00000)
|
||||
{ /* x > 2**302 */
|
||||
{
|
||||
SET_RESTORE_ROUNDL (FE_TONEAREST);
|
||||
if (x == 0.0L || ix >= 0x7ff00000) /* if x is 0 or inf */
|
||||
return sgn == 1 ? -zero : zero;
|
||||
else if ((long double) n <= x)
|
||||
{
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if (ix >= 0x52d00000)
|
||||
{ /* x > 2**302 */
|
||||
|
||||
/* ??? Could use an expansion for large x here. */
|
||||
/* ??? Could use an expansion for large x here. */
|
||||
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
long double s;
|
||||
long double c;
|
||||
__sincosl (x, &s, &c);
|
||||
switch (n & 3)
|
||||
{
|
||||
case 0:
|
||||
temp = c + s;
|
||||
break;
|
||||
case 1:
|
||||
temp = -c + s;
|
||||
break;
|
||||
case 2:
|
||||
temp = -c - s;
|
||||
break;
|
||||
case 3:
|
||||
temp = c - s;
|
||||
break;
|
||||
}
|
||||
b = invsqrtpi * temp / __ieee754_sqrtl (x);
|
||||
}
|
||||
else
|
||||
{
|
||||
a = __ieee754_j0l (x);
|
||||
b = __ieee754_j1l (x);
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
temp = b;
|
||||
b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ix < 0x3e100000)
|
||||
{ /* x < 2**-29 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if (n >= 33) /* underflow, result < 10^-300 */
|
||||
b = zero;
|
||||
else
|
||||
{
|
||||
temp = x * 0.5;
|
||||
b = temp;
|
||||
for (a = one, i = 2; i <= n; i++)
|
||||
{
|
||||
a *= (long double) i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
long double t, v;
|
||||
long double q0, q1, h, tmp;
|
||||
int32_t k, m;
|
||||
w = (n + n) / (long double) x;
|
||||
h = 2.0L / (long double) x;
|
||||
q0 = w;
|
||||
z = w + h;
|
||||
q1 = w * z - 1.0L;
|
||||
k = 1;
|
||||
while (q1 < 1.0e17L)
|
||||
{
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n + n;
|
||||
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
|
||||
t = one / (i / x - t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two / x;
|
||||
tmp = tmp * __ieee754_logl (fabsl (v * tmp));
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
long double s;
|
||||
long double c;
|
||||
__sincosl (x, &s, &c);
|
||||
switch (n & 3)
|
||||
{
|
||||
case 0:
|
||||
temp = c + s;
|
||||
break;
|
||||
case 1:
|
||||
temp = -c + s;
|
||||
break;
|
||||
case 2:
|
||||
temp = -c - s;
|
||||
break;
|
||||
case 3:
|
||||
temp = c - s;
|
||||
break;
|
||||
}
|
||||
b = invsqrtpi * temp / __ieee754_sqrtl (x);
|
||||
}
|
||||
else
|
||||
{
|
||||
a = __ieee754_j0l (x);
|
||||
b = __ieee754_j1l (x);
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
temp = b;
|
||||
b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ix < 0x3e100000)
|
||||
{ /* x < 2**-29 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if (n >= 33) /* underflow, result < 10^-300 */
|
||||
b = zero;
|
||||
else
|
||||
{
|
||||
temp = x * 0.5;
|
||||
b = temp;
|
||||
for (a = one, i = 2; i <= n; i++)
|
||||
{
|
||||
a *= (long double) i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
long double t, v;
|
||||
long double q0, q1, h, tmp;
|
||||
int32_t k, m;
|
||||
w = (n + n) / (long double) x;
|
||||
h = 2.0L / (long double) x;
|
||||
q0 = w;
|
||||
z = w + h;
|
||||
q1 = w * z - 1.0L;
|
||||
k = 1;
|
||||
while (q1 < 1.0e17L)
|
||||
{
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n + n;
|
||||
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
|
||||
t = one / (i / x - t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two / x;
|
||||
tmp = tmp * __ieee754_logl (fabsl (v * tmp));
|
||||
|
||||
if (tmp < 1.1356523406294143949491931077970765006170e+04L)
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if (b > 1e100L)
|
||||
{
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* j0() and j1() suffer enormous loss of precision at and
|
||||
* near zero; however, we know that their zero points never
|
||||
* coincide, so just choose the one further away from zero.
|
||||
*/
|
||||
z = __ieee754_j0l (x);
|
||||
w = __ieee754_j1l (x);
|
||||
if (fabsl (z) >= fabsl (w))
|
||||
b = (t * z / b);
|
||||
else
|
||||
b = (t * w / a);
|
||||
}
|
||||
}
|
||||
if (sgn == 1)
|
||||
return -b;
|
||||
else
|
||||
return b;
|
||||
if (tmp < 1.1356523406294143949491931077970765006170e+04L)
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if (b > 1e100L)
|
||||
{
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* j0() and j1() suffer enormous loss of precision at and
|
||||
* near zero; however, we know that their zero points never
|
||||
* coincide, so just choose the one further away from zero.
|
||||
*/
|
||||
z = __ieee754_j0l (x);
|
||||
w = __ieee754_j1l (x);
|
||||
if (fabsl (z) >= fabsl (w))
|
||||
b = (t * z / b);
|
||||
else
|
||||
b = (t * w / a);
|
||||
}
|
||||
}
|
||||
if (sgn == 1)
|
||||
ret = -b;
|
||||
else
|
||||
ret = b;
|
||||
}
|
||||
if (ret == 0)
|
||||
ret = __copysignl (LDBL_MIN, ret) * LDBL_MIN;
|
||||
return ret;
|
||||
}
|
||||
strong_alias (__ieee754_jnl, __jnl_finite)
|
||||
|
||||
|
@ -71,7 +71,7 @@ __ieee754_jnl (int n, long double x)
|
||||
{
|
||||
u_int32_t se, i0, i1;
|
||||
int32_t i, ix, sgn;
|
||||
long double a, b, temp, di;
|
||||
long double a, b, temp, di, ret;
|
||||
long double z, w;
|
||||
|
||||
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
||||
@ -96,195 +96,201 @@ __ieee754_jnl (int n, long double x)
|
||||
return (__ieee754_j1l (x));
|
||||
sgn = (n & 1) & (se >> 15); /* even n -- 0, odd n -- sign(x) */
|
||||
x = fabsl (x);
|
||||
if (__glibc_unlikely ((ix | i0 | i1) == 0 || ix >= 0x7fff))
|
||||
/* if x is 0 or inf */
|
||||
b = zero;
|
||||
else if ((long double) n <= x)
|
||||
{
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if (ix >= 0x412D)
|
||||
{ /* x > 2**302 */
|
||||
{
|
||||
SET_RESTORE_ROUNDL (FE_TONEAREST);
|
||||
if (__glibc_unlikely ((ix | i0 | i1) == 0 || ix >= 0x7fff))
|
||||
/* if x is 0 or inf */
|
||||
return sgn == 1 ? -zero : zero;
|
||||
else if ((long double) n <= x)
|
||||
{
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if (ix >= 0x412D)
|
||||
{ /* x > 2**302 */
|
||||
|
||||
/* ??? This might be a futile gesture.
|
||||
If x exceeds X_TLOSS anyway, the wrapper function
|
||||
will set the result to zero. */
|
||||
/* ??? This might be a futile gesture.
|
||||
If x exceeds X_TLOSS anyway, the wrapper function
|
||||
will set the result to zero. */
|
||||
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
long double s;
|
||||
long double c;
|
||||
__sincosl (x, &s, &c);
|
||||
switch (n & 3)
|
||||
{
|
||||
case 0:
|
||||
temp = c + s;
|
||||
break;
|
||||
case 1:
|
||||
temp = -c + s;
|
||||
break;
|
||||
case 2:
|
||||
temp = -c - s;
|
||||
break;
|
||||
case 3:
|
||||
temp = c - s;
|
||||
break;
|
||||
}
|
||||
b = invsqrtpi * temp / __ieee754_sqrtl (x);
|
||||
}
|
||||
else
|
||||
{
|
||||
a = __ieee754_j0l (x);
|
||||
b = __ieee754_j1l (x);
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
temp = b;
|
||||
b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ix < 0x3fde)
|
||||
{ /* x < 2**-33 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if (n >= 400) /* underflow, result < 10^-4952 */
|
||||
b = zero;
|
||||
else
|
||||
{
|
||||
temp = x * 0.5;
|
||||
b = temp;
|
||||
for (a = one, i = 2; i <= n; i++)
|
||||
{
|
||||
a *= (long double) i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
long double t, v;
|
||||
long double q0, q1, h, tmp;
|
||||
int32_t k, m;
|
||||
w = (n + n) / (long double) x;
|
||||
h = 2.0L / (long double) x;
|
||||
q0 = w;
|
||||
z = w + h;
|
||||
q1 = w * z - 1.0L;
|
||||
k = 1;
|
||||
while (q1 < 1.0e11L)
|
||||
{
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n + n;
|
||||
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
|
||||
t = one / (i / x - t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two / x;
|
||||
tmp = tmp * __ieee754_logl (fabsl (v * tmp));
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
long double s;
|
||||
long double c;
|
||||
__sincosl (x, &s, &c);
|
||||
switch (n & 3)
|
||||
{
|
||||
case 0:
|
||||
temp = c + s;
|
||||
break;
|
||||
case 1:
|
||||
temp = -c + s;
|
||||
break;
|
||||
case 2:
|
||||
temp = -c - s;
|
||||
break;
|
||||
case 3:
|
||||
temp = c - s;
|
||||
break;
|
||||
}
|
||||
b = invsqrtpi * temp / __ieee754_sqrtl (x);
|
||||
}
|
||||
else
|
||||
{
|
||||
a = __ieee754_j0l (x);
|
||||
b = __ieee754_j1l (x);
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
temp = b;
|
||||
b = b * ((long double) (i + i) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ix < 0x3fde)
|
||||
{ /* x < 2**-33 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if (n >= 400) /* underflow, result < 10^-4952 */
|
||||
b = zero;
|
||||
else
|
||||
{
|
||||
temp = x * 0.5;
|
||||
b = temp;
|
||||
for (a = one, i = 2; i <= n; i++)
|
||||
{
|
||||
a *= (long double) i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
long double t, v;
|
||||
long double q0, q1, h, tmp;
|
||||
int32_t k, m;
|
||||
w = (n + n) / (long double) x;
|
||||
h = 2.0L / (long double) x;
|
||||
q0 = w;
|
||||
z = w + h;
|
||||
q1 = w * z - 1.0L;
|
||||
k = 1;
|
||||
while (q1 < 1.0e11L)
|
||||
{
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n + n;
|
||||
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
|
||||
t = one / (i / x - t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two / x;
|
||||
tmp = tmp * __ieee754_logl (fabsl (v * tmp));
|
||||
|
||||
if (tmp < 1.1356523406294143949491931077970765006170e+04L)
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if (b > 1e100L)
|
||||
{
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* j0() and j1() suffer enormous loss of precision at and
|
||||
* near zero; however, we know that their zero points never
|
||||
* coincide, so just choose the one further away from zero.
|
||||
*/
|
||||
z = __ieee754_j0l (x);
|
||||
w = __ieee754_j1l (x);
|
||||
if (fabsl (z) >= fabsl (w))
|
||||
b = (t * z / b);
|
||||
else
|
||||
b = (t * w / a);
|
||||
}
|
||||
}
|
||||
if (sgn == 1)
|
||||
return -b;
|
||||
else
|
||||
return b;
|
||||
if (tmp < 1.1356523406294143949491931077970765006170e+04L)
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (i = n - 1, di = (long double) (i + i); i > 0; i--)
|
||||
{
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if (b > 1e100L)
|
||||
{
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* j0() and j1() suffer enormous loss of precision at and
|
||||
* near zero; however, we know that their zero points never
|
||||
* coincide, so just choose the one further away from zero.
|
||||
*/
|
||||
z = __ieee754_j0l (x);
|
||||
w = __ieee754_j1l (x);
|
||||
if (fabsl (z) >= fabsl (w))
|
||||
b = (t * z / b);
|
||||
else
|
||||
b = (t * w / a);
|
||||
}
|
||||
}
|
||||
if (sgn == 1)
|
||||
ret = -b;
|
||||
else
|
||||
ret = b;
|
||||
}
|
||||
if (ret == 0)
|
||||
ret = __copysignl (LDBL_MIN, ret) * LDBL_MIN;
|
||||
return ret;
|
||||
}
|
||||
strong_alias (__ieee754_jnl, __jnl_finite)
|
||||
|
||||
|
@ -1767,6 +1767,30 @@ ifloat: 4
|
||||
ildouble: 4
|
||||
ldouble: 4
|
||||
|
||||
Function: "jn_downward":
|
||||
double: 5
|
||||
float: 5
|
||||
idouble: 5
|
||||
ifloat: 5
|
||||
ildouble: 4
|
||||
ldouble: 4
|
||||
|
||||
Function: "jn_towardzero":
|
||||
double: 5
|
||||
float: 5
|
||||
idouble: 5
|
||||
ifloat: 5
|
||||
ildouble: 5
|
||||
ldouble: 5
|
||||
|
||||
Function: "jn_upward":
|
||||
double: 5
|
||||
float: 5
|
||||
idouble: 5
|
||||
ifloat: 5
|
||||
ildouble: 5
|
||||
ldouble: 5
|
||||
|
||||
Function: "lgamma":
|
||||
double: 2
|
||||
float: 2
|
||||
|
Loading…
x
Reference in New Issue
Block a user