This patch adds the suffix "_compat2" to the wrappers for lgamma,
which use _LIB_VERSION / matherr / __kernel_standard functionality.
The suffix "_compat2" is used because the suffix "_compat" is already
used.
Tested for powerpc64le, s390, and x86_64.
* math/Makefile (libm-calls): Move w_lgammaF...
(libm-compat-calls-auto): Here.
* math/w_lgamma.c: Add suffix "_compat2" to filename.
* math/w_lgammaf.c: Likewise.
* math/w_lgammal.c: Likewise.
* math/w_lgamma_compat2.c: New file, copied from above.
* math/w_lgammaf_compat2.c: Likewise.
* math/w_lgammal_compat2.c: Likewise.
This patch adds the suffix "_compat" to lgamma_r wrappers and make
some adjustments to #includes and Makefiles. This is a step towards
deprecation of wrappers that use _LIB_VERSION / matherr /
__kernel_standard functionality.
Tested for powerpc64le, s390, and x86_64.
* math/Makefile (libm-calls): Move w_lgammaF_r...
(libm-compat-calls-auto): Here.
* math/w_lgamma_r.c: Add suffix "_compat" to filename.
* math/w_lgammaf_r.c: Likewise.
* math/w_lgammal_r.c: Likewise.
* sysdeps/ia64/fpu/w_lgammal_r.c: Likewise.
* sysdeps/ia64/fpu/w_lgammaf_r.c: Likewise.
* sysdeps/ia64/fpu/w_lgamma_r.c: Likewise.
* math/w_lgamma_r_compat.c: New file, copied from above.
* math/w_lgammaf_r_compat.c: Likewise.
* math/w_lgammal_r_compat.c: Likewise.
* sysdeps/ia64/fpu/w_lgamma_r_compat.c: Likewise.
* sysdeps/ia64/fpu/w_lgammaf_r_compat.c: Likewise.
* sysdeps/ia64/fpu/w_lgammal_r_compat.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_lgamma_r.c: Add suffix "_compat"
to filename.
* sysdeps/ieee754/ldbl-opt/w_lgammal_r.c: Likewise.
* sysdeps/ieee754/ldbl-opt/w_lgamma_r_compat.c: New file
copied from above and adjusted for the new filenames.
* sysdeps/ieee754/ldbl-opt/w_lgammal_r_compat.c: Likewise.
The code to set value passed a tunable_val_t, which when cast to
int32_t on big-endian gives the wrong value. Instead, use
tunable_val_t.numval instead, which can then be safely cast into
int32_t.
Add PTRACE_EVENT_STOP value to Linux's sys/ptrace.h, modify related
comments accordingly.
This constant initially appeared in Linux 3.1 (kernel commit 3544d72a,
"ptrace: implement PTRACE_SEIZE") but its value has changed later
in Linux 3.4 (kernel commit 5cdf389a, "ptrace: renumber
PTRACE_EVENT_STOP so that future new options and events can match").
The comment is also taken from the above commit.
This constant is used by e.g. strace, CRIU, Mozilla RR.
* sysdeps/unix/sysv/linux/aarch64/sys/ptrace.h (__ptrace_eventcodes):
Add PTRACE_EVENT_STOP.
* sysdeps/unix/sysv/linux/ia64/sys/ptrace.h: Likewise.
* sysdeps/unix/sysv/linux/powerpc/sys/ptrace.h: Likewise.
* sysdeps/unix/sysv/linux/s390/sys/ptrace.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/sys/ptrace.h: Likewise.
* sysdeps/unix/sysv/linux/sys/ptrace.h: Likewise.
* sysdeps/unix/sysv/linux/tile/sys/ptrace.h: Likewise.
The libm vector tests disable tests of exception raising via defining
macros EXCEPTION_TESTS_float and EXCEPTION_TESTS_double to 0 in the
headers for individual vector lengths.
As EXCEPTION_TESTS is used in code in libm-test-driver.c that is
otherwise ready to be built only once per type, this is not a good
idea; it's better to define TEST_EXCEPTIONS appropriately so that
flag_test_exceptions then gets initialized appropriately.
Furthermore, it's better to do this just once, in test-math-vector.h,
since there is no actual dependence on the vector length or type.
This patch duly makes that change.
Tested for x86_64.
* math/test-math-finite.h (TEST_EXCEPTIONS): New macro.
* math/test-math-no-finite.h (TEST_EXCEPTIONS): Likewise.
* math/test-math-vector.h (TEST_EXCEPTIONS): Likewise.
* math/test-math-no-inline.h (TEST_EXCEPTIONS): Remove macro.
* math/test-double-vlen2.h (EXCEPTION_TESTS_double): Likewise.
* math/test-double-vlen4.h (EXCEPTION_TESTS_double): Likewise.
* math/test-double-vlen8.h (EXCEPTION_TESTS_double): Likewise.
* math/test-float-vlen4.h (EXCEPTION_TESTS_float): Likewise.
* math/test-float-vlen8.h (EXCEPTION_TESTS_float): Likewise.
* math/test-float-vlen16.h (EXCEPTION_TESTS_float): Likewise.
Bug 21112 reports a case where powf is substantially inaccurate. This
results from a multiplication where cp_h*p_h is required to be exact,
and p_h is masked to have only 12 leading nonzero bits in its
mantissa, but the value of cp_h has the 13th bit nonzero, leading to
inexact multiplication results in some cases that can result in large
errors in the final result of powf. This patch fixes this by using a
value of cp_h correctly rounded to nearest to 12 bits, with a
corresponding updated value of cp_l.
Tested for x86_64 and x86.
[BZ #21112]
* sysdeps/ieee754/flt-32/e_powf.c (cp_h): Use value with trailing
12 bits zero.
(cp_l): Update for new value of cp_h.
* math/auto-libm-test-in: Add another test of pow.
* math/auto-libm-test-out-pow: Regenerated.
For strings >16B and <32B existing algorithm takes more time than default
implementation when strings are placed closed to end of page. This is due
to byte by byte access for handling page cross. This is improved by
following >32B code path where the address is adjusted to aligned memory
before doing load doubleword operation instead of loading bytes.
Tested on powerpc64 and powerpc64le.
Splitting libm tests by function will mean about a thousand such tests
built separately instead of the present nine (plus vector variants).
When this is done, it's desirable to avoid needing to build all the
test infrastructure so many times. Also, simply including
libm-test-driver.c as-is into per-function tests doesn't actually
work, because the various check_* functions are not used by all tests
and so generate errors for unused static functions.
Although some pieces of infrastructure depend on the type being tested
while others don't, building once per type seems the simplest
approach. This patch makes changes to libm-test-driver.c in
preparation for that. Various cases where functions directly use
macros such as TEST_ERRNO (that may vary depending on things other
than the type under test) are changed to use variables initialized
using those macros, while most of the code in main is moved out to
functions libm_test_init and libm_test_fini.
The idea is that all the functions in libm-test-driver.c will be moved
out in a subsequent patch to be built once per type (and be no longer
static when they are used from per-function tests), while
libm-test-driver.c remains containing definitions of various variables
(no longer static, of course, because they'll be used in the per-type
code) and the main function. Declarations / macros relevant to both
the once-per-type code and the per-function tests will go in a shared
header.
Tested for x86_64.
* math/libm-test-driver.c (flag_test_errno): New variable.
(flag_test_exceptions): Likewise.
(flag_test_finite): Likewise.
(flag_test_inline): Likewise.
(flag_test_mathvec): Likewise.
(test_msg): Likewise.
(ulp_idx): Likewise.
(qtype_str): Likewise.
(ULP_IDX): Remove macro.
(QTYPE_STR): Likewise.
(find_ulps): Use ulp_idx not ULP_IDX.
(print_function_ulps): Use qtype_str, printed with %s, not
QTYPE_STR, printed with concatentation to format string.
(print_complex_function_ulps): Likewise.
(test_exceptions): Use flag_test_exceptions not TEST_EXCEPTIONS.
(test_errno): Use flag_test_errno not TEST_ERRNO.
(enable_test): Use flag_test_inline, flag_test_finite and
flag_test_mathvec instead of TEST_INLINE, TEST_FINITE and
TEST_MATHVEC.
(libm_test_init): New function. Factored out of main.
(libm_test_finish): Likewise.
(main): Call libm_test_init and libm_test_finish and move most
code to those functions.
Various files using the libm-test infrastructure define a TEST_MSG
macro with an informal description of the tests being run.
This patch moves this macro to libm-test-driver.c (the definition
depending on other macros already defined), so files specific to
(type, choice of whether to test inline functions or finite-math-only
functions, vector length) no longer need to define it. This is in
preparation for replacing files such as test-float.c with per-function
test-float-<func>.c etc. automatically generated in the build
directory when tests are run.
Tested for x86_64.
* math/libm-test-driver.c (STRX): New macro.
(STR): Likewise.
(STR_FLOAT): Likewise.
(STR_VEC_LEN): Likewise.
(TEST_MSG): Likewise. Define here instead of expecting to be
defined by including file.
* math/test-double-finite.c (TEST_MSG): Remove macro.
* math/test-double-vlen2.h (TEST_MSG): Likewise.
* math/test-double-vlen4.h (TEST_MSG): Likewise.
* math/test-double-vlen8.h (TEST_MSG): Likewise.
* math/test-double.c (TEST_MSG): Likewise.
* math/test-float-finite.c (TEST_MSG): Likewise.
* math/test-float-vlen16.h (TEST_MSG): Likewise.
* math/test-float-vlen4.h (TEST_MSG): Likewise.
* math/test-float-vlen8.h (TEST_MSG): Likewise.
* math/test-float.c (TEST_MSG): Likewise.
* math/test-idouble.c (TEST_MSG): Likewise.
* math/test-ifloat.c (TEST_MSG): Likewise.
* math/test-ildouble.c (TEST_MSG): Likewise.
* math/test-ldouble-finite.c (TEST_MSG): Likewise.
* math/test-ldouble.c (TEST_MSG): Likewise.
math/auto-libm-test-out is, at over 30 MB, by far the largest file in
the glibc source tree. This patch splits it by function, so reducing
it to auto-libm-test-out-<func> files that are all under 5 MB in size.
This is preliminary to splitting up libm-test.inc as well so that each
function's tests can also be processed separately by
gen-libm-test.pl. As a preliminary patch it doesn't actually
implement that step; rather, all the separate files get concatenated
by the Makefile to produce the monolithic auto-libm-test-out file
again as an input to gen-libm-test.pl. (The concatentation is
identical to the file in the source tree before this patch.)
Even this preliminary step, however, is of use independent of
splitting up libm-test.inc: some tests for csin and csinh have not
been moved to auto-libm-test-in because they result in
auto-libm-test-out generation taking several minutes rather than a few
seconds (all released MPC versions are very slow for certain sin /
sinh inputs; there are some old improvements in MPC mainline which
should eventually become MPC 1.1, but the complex inverse trig and
hyperbolic functions are slow even in MPC mainline and have yet to be
moved to auto-libm-test-in at all), and it seems much more reasonable
to add such inputs to auto-libm-test-in when it will only slow down
regeneration for particular functions than when it will slow down
regeneration globally.
gen-auto-libm-tests still parses the whole input file, but only
generates output for the requested function. This ensures bad syntax
in the file is always detected, and parsing the whole file is quick;
it's output generation that is comparatively slow for some functions.
Tested for x86_64.
* math/gen-auto-libm-tests.c: Update comment about use of program.
(generate_output): Add argument FUNCTION.
(main): Require extra argument. Pass function name to
generate_output.
* math/Makefile (generated): Add auto-libm-test-out.
(libm-test-funcs-auto): New variable.
(auto-libm-test-out-files): New variable.
($(objpfx)libm-test.c): Depend on $(auto-libm-test-out-files).
Concatenate those files to form $(objpfx)auto-libm-test-out and
use it as input to gen-libm-test.pl.
* math/README.libm-test: Update.
* math/auto-libm-test-out: Remove.
* math/auto-libm-test-out-acos: New generated file.
* math/auto-libm-test-out-acosh: Likewise.
* math/auto-libm-test-out-asin: Likewise.
* math/auto-libm-test-out-asinh: Likewise.
* math/auto-libm-test-out-atan: Likewise.
* math/auto-libm-test-out-atan2: Likewise.
* math/auto-libm-test-out-atanh: Likewise.
* math/auto-libm-test-out-cabs: Likewise.
* math/auto-libm-test-out-carg: Likewise.
* math/auto-libm-test-out-cbrt: Likewise.
* math/auto-libm-test-out-ccos: Likewise.
* math/auto-libm-test-out-ccosh: Likewise.
* math/auto-libm-test-out-cexp: Likewise.
* math/auto-libm-test-out-clog: Likewise.
* math/auto-libm-test-out-clog10: Likewise.
* math/auto-libm-test-out-cos: Likewise.
* math/auto-libm-test-out-cosh: Likewise.
* math/auto-libm-test-out-cpow: Likewise.
* math/auto-libm-test-out-csin: Likewise.
* math/auto-libm-test-out-csinh: Likewise.
* math/auto-libm-test-out-csqrt: Likewise.
* math/auto-libm-test-out-ctan: Likewise.
* math/auto-libm-test-out-ctanh: Likewise.
* math/auto-libm-test-out-erf: Likewise.
* math/auto-libm-test-out-erfc: Likewise.
* math/auto-libm-test-out-exp: Likewise.
* math/auto-libm-test-out-exp10: Likewise.
* math/auto-libm-test-out-exp2: Likewise.
* math/auto-libm-test-out-expm1: Likewise.
* math/auto-libm-test-out-fma: Likewise.
* math/auto-libm-test-out-hypot: Likewise.
* math/auto-libm-test-out-j0: Likewise.
* math/auto-libm-test-out-j1: Likewise.
* math/auto-libm-test-out-jn: Likewise.
* math/auto-libm-test-out-lgamma: Likewise.
* math/auto-libm-test-out-log: Likewise.
* math/auto-libm-test-out-log10: Likewise.
* math/auto-libm-test-out-log1p: Likewise.
* math/auto-libm-test-out-log2: Likewise.
* math/auto-libm-test-out-pow: Likewise.
* math/auto-libm-test-out-sin: Likewise.
* math/auto-libm-test-out-sincos: Likewise.
* math/auto-libm-test-out-sinh: Likewise.
* math/auto-libm-test-out-sqrt: Likewise.
* math/auto-libm-test-out-tan: Likewise.
* math/auto-libm-test-out-tanh: Likewise.
* math/auto-libm-test-out-tgamma: Likewise.
* math/auto-libm-test-out-y0: Likewise.
* math/auto-libm-test-out-y1: Likewise.
* math/auto-libm-test-out-yn: Likewise.
math/Makefile uses libm-test.stmp to handle dependencies involving
multiple generated files all generated by a single sequence of
commands in a single Makefile rule.
Having separated the libm-test-ulps.h and libm-test.c generation into
separate runs of gen-libm-test.pl, there is now no need for a single
rule to generate multiple target files; each of the three target files
involved can be generated by a separate Makefile rule, meaning normal
dependencies on the individual files can be used and so libm-test.stmp
is not needed at all. This patch does just that, eliminating the
.stmp file, in further preparation for when there are many separate
libm-test-<func>.c files generated from libm-test-<func>.inc and the
dependencies are on just the relevant .c file in each case.
Tested for x86_64.
* math/Makefile (generated): Do not include libm-test.stmp.
($(addprefix $(objpfx), $(libm-tests-generated))): Do not depend
on $(objpfx)libm-test.stmp.
($(objpfx)libm-test.stmp): Remove rule.
($(objpfx)libm-test-ulps.h): New rule.
($(objpfx)libm-test.c): Likewise.
($(objpfx)libm-have-vector-test.h): Likewise.
($(addprefix $(objpfx), $(libm-tests.o)): Depend directly on
individual generated files, not libm-test.stmp.
This patch reworks how input and output files are specified for
gen-libm-test.pl.
Previously, the script had names of various inputs and outputs
hardcoded, with a -o option to specify an output directory. This
patch replaces this with all inputs and outputs being specified
explicitly as the arguments of options passed to the script. Outputs
are only generated if the relevant option is passed, and only the
processing required for the indicated outputs is done. The Makefile
is made to pass options for generating libm-test-ulps.h in a separate
invocation of gen-libm-test.pl from that generating libm-test.c.
This is all in preparation for splitting up libm-test.inc and
auto-libm-test-out and running tests separately for each function,
when gen-libm-test.pl will be run separately for each function to
generate the .c file but only once to generate libm-test-ulps.h (and
those runs will be able to be in parallel).
Tested for x86_64. The generated libm-test.c and libm-test-ulps.h are
identical before and after the patch. Also tested the "make
regen-ulps" case.
* math/gen-libm-test.pl ($output_dir): Remove variable.
($srcdir): Likewise.
($opt_a): New variable.
($opt_c): Likewise.
($opt_C): Likewise.
($opt_H): Likewise.
(-n): Make option take argument and use it as NewUlps output.
(-a): New option. Use its argument for auto-libm-test-out input.
(-c): New option. Use its argument for libm-test.inc input.
(-C): New option. Use its argument for libm-test.c output.
(-H): New option. Use its argument for libm-test-ulps.h output.
(top level): Only process inputs needed to generate outputs
specified by command-line options. Only generate outputs
specified by command-line options.
* math/README.libm-test: Update example gen-libm-test.pl command.
* math/Makefile ($(objpfx)libm-test.stmp): Update gen-libm-test.pl
commands.
(regen-ulps): Likewise.
they are only used internally in a few places. Rename all uses that
occur in GLIBC.
* hurd/path-lookup.c (file_name_path_scan): Rename index to strchr.
* include/string.h (index): Remove define.
(rindex): Likewise.
* misc/getttyent.c (__getttyent): Rename index to strchr.
* misc/ttyslot.c (ttyslot): Rename rindex to strrchr.
* sunrpc/rpc_main.c (mkfile_output): Likewise.
math/libm-test.inc has a comment listing the functions tested and not
tested. The list of functions tested duplicates what is immediately
obvious from the rest of the file and adds another place to update
when adding a function. I've put the information about functions not
tested on the wiki todo list; this patch removes that comment, in
preparation for splitting tests of each function into separate .inc
files with common code staying in a separate .c file.
Tested for x86_64.
* math/libm-test.inc: Remove comment listing functions tested and
not tested.
This patch removes the COLORING_INCREMENT define and usage on allocatestack.c.
It has not been used since 564cd8b67ec487f (glibc-2.3.3) by any architecture.
The idea is to simplify the code by removing obsolete code.
* nptl/allocatestack.c [COLORING_INCREMENT] (nptl_ncreated): Remove.
(allocate_stack): Remove COLORING_INCREMENT usage.
* nptl/stack-aliasing.h (COLORING_INCREMENT). Likewise.
* sysdeps/i386/i686/stack-aliasing.h (COLORING_INCREMENT): Likewise.
manual/libm-err-tab.pl contains a hardcoded list of libm functions for
which ulps are listed in the manual, and another hardcoded list in a
comment of functions deliberately excluded because of an expected lack
of ulps (and the two together are not in fact an exhaustive list of
libm functions tested through the libm-test machinery).
This patch removes these hardcoded lists, so eliminating this from the
places needing updating when a new libm function is added. Instead,
ulps are tabulated for functions for which they are seen in
libm-test-ulps files, in alphabetical order. The pseudo-function
names such as *_downward and *_vlen* are excluded since they are
excluded from the existing lists, and the description in the manual is
updated to explain how those entries are excluded and if a function is
not listed at all it does not have known errors.
Tested for x86_64.
* manual/libm-err-tab.pl (@all_functions): Change to
%all_functions. Initialize as empty.
(parse_ulps): Add to %all_functions based on functions found in
ulps files. Ignore results for non-default rounding modes and
vector functions.
(print_platforms): Use %all_platforms.
* manual/math.texi (Errors in Math Functions): Document omissions
from the table.
In <https://sourceware.org/ml/libc-alpha/2015-12/msg00543.html>,
Florian noted highly parallel builds being slowed down by
gen-libm-test.pl running during the build, when it should only run for
testing, not for building glibc itself.
This is a consequence of libm-test.c being listed in before-compile.
That listing in before-compile arose from the error reported in
<https://sourceware.org/ml/libc-hacker/1999-10/msg00054.html> when
building dependencies: at that time, dependencies were generated
separation from compilation, so if a source file included a generated
file it wasn't enough for the dependencies for the .o file to be
correct, the generated file needed to be listed in before-compile.
Since <https://sourceware.org/ml/libc-hacker/2003-05/msg00001.html>,
dependencies are generated as a side-effect of compilation. This
means that having the right dependencies for the .o files for the
tests fully suffices to ensure that libm-test.c is generated by the
time it's needed; no entry in before-compile is needed. And we indeed
have such a dependency for all the tests using libm-test.c:
$(addprefix $(objpfx), $(libm-tests.o)): $(objpfx)libm-test.stmp
Thus, the before-compile definition is unnecessary, and this patch
removes it. (This may of course move serialization from the glibc
build to glibc testing, but I intend to split up libm-test.inc so that
tests for each (floating-point type, libm function) pair are built and
run separately, which should reduce that serialization.)
Tested for x86_64.
* math/Makefile (before-compile): Remove.
It is no longer needed to preserve the flags parameter to `clone' since
the commit c579f48edba88380635ab98cb612030e3ed8691e (Remove cached
PID/TID in clone).
Testing was performed successfully on sparcv9/Linux.
[BZ #21075]
* sysdeps/unix/sysv/linux/sparc/sparc64/clone.S (__clone): Remove
unused assignment.
* sysdeps/unix/sysv/linux/sparc/sparc32/clone.S (__clone): Likewise.
The macros lll_trylock, lll_cond_trylock are extended by an __glibc_unlikely
hint. Now the trylock macros are based on the same assumption about a
free/busy lock as lll_lock.
With the hint gcc emits code in e.g. pthread_mutex_trylock which does
not use jumps if the lock is free. Without the hint it had to jump away
if the lock is free.
Tested on s390x, ppc.
ChangeLog:
* sysdeps/nptl/lowlevellock.h (lll_trylock, lll_cond_trylock):
Add __glibc_unlikely hint.
Based on comments on previous attempt to address BZ#16640 [1],
the idea is not support invalid use of strtok (the original
bug report proposal). This leader to a new strtok optimized
strtok implementation [2].
The idea of this patch is to fix BZ#16640 to align all the
implementations to a same contract. However, with newer strtok
code it is better to get remove the old assembly ones instead of
fix them.
For x86 is a gain in all cases since the new implementation can
potentially use sse2/sse42 implementation for strspn and strcspn.
This shows a better performance on both i686 and x86_64 using
the string benchtests.
On powerpc64 the gains are mixed, where only for larger inputs
or keys some gains are showns (based on benchtest it seems that
it shows some gains for keys larger than 10 and inputs larger
than 32). I would prefer to remove the optimized implementation
based on first code simplicity and second because some more gain
could be optimized using a better optimized strcspn/strspn
code (as for x86). However if powerpc arch maintainers prefer I
can send a v2 with the assembly code adjusted instead.
Checked on x86_64-linux-gnu, i686-linux-gnu, and powerpc64le-linux-gnu.
[BZ #16640]
* sysdeps/i386/i686/strtok.S: Remove file.
* sysdeps/i386/i686/strtok_r.S: Likewise.
* sysdeps/i386/strtok.S: Likewise.
* sysdeps/i386/strtok_r.S: Likewise.
* sysdeps/powerpc/powerpc64/strtok.S: Likewise.
* sysdeps/powerpc/powerpc64/strtok_r.S: Likewise.
* sysdeps/x86_64/strtok.S: Likewise.
* sysdeps/x86_64/strtok_r.S: Likewise.
[1] https://sourceware.org/ml/libc-alpha/2016-10/msg00411.html
[2] https://sourceware.org/ml/libc-alpha/2016-12/msg00461.html
As noted by c1f0601389db64d9, previous posix_fadvise consolidation
broke on mips o32. As stated in commit message, MIPS o32 only defines
__NR_fadvise64 and it is behaves like __NR_fadvise64_64.
This patches consolidates both ARM and mips o32 version by fixing
the ARM used option (__NR_fadvise64_64 withouth the alignment required
by abi) and added another option, __ASSUME_FADVISE64_AS_64_64,
which is used on mips o32.
When this option is used, posix_fadvise will use __NR_fadvise64_64
behavior (by defining or not __ASSUME_FADVISE64_64_6ARG). For
mips, if __NR_fadvise64_64 is not defined, __NR_fadvise will be used.
I also updated the posix_fadvise comments to explain better the
different kernel abi used in the supported architectures.
I checked with a mips o32 and verified that posix_fadvise.o is
indeed using 7 argument syscall with the expected argument position.
I also checked on i686-linux-gnu and arm-gnu-eabihf.
* sysdeps/unix/sysv/linux/arm/posix_fadvise.c: Remove file.
* sysdeps/unix/sysv/linux/mips/mips32/posix_fadvise.c: Likewise.
* sysdeps/unix/sysv/linux/mips/kernel-features.h
(__ASSUME_FADVISE64_AS_64_64): Define.
* sysdeps/unix/sysv/linux/posix_fadvise.c [__NR_fadvise64]: Add
!defined __ASSUME_FADVISE64_AS_64_64 to use syscall issue.
[!__NR_fadvise64 && __ASSUME_FADVISE64_64_6ARG]: Remove
__ALIGNMENT_ARG usage.
[!__NR_fadvise64 && !__ASSUME_FADVISE64_64_6ARG]: Define
__NR_fadvise64_64 if it is not defined.
The child process of the tst-env-setuid process was failing correctly
with EXIT_UNSUPPORTED but the parent did not carry that status forward
and failed instead. This patch fixes this so that tests on nosuid
/tmp fails gracefully with UNSUPPORTED. Tested by making my tmpfs
nosuid.
* elf/tst-env-setuid.c (do_execve): Return EXIT_UNSUPPORTED in
parent if child exited in that manner. Print WEXITSTATUS
instead of the raw status.
(do_test_prep): Rename to do_test.
(do_test): Return the result of run_executable_sgid.
(TEST_FUNCTION_ARGV): Adjust.
In _dl_nothread_init_static_tls() and init_one_static_tls() we must not
touch the DTV of other threads since we do not have ownership of them.
The DTV need not be initialized at this point anyway since only LD/GD
accesses will use them. If LD/GD accesses occur they will take care to
initialize their own thread's DTV.
Concurrency comments were removed from the patch since they need to be
reworked along with a full description of DTV ownership and when it is
or is not safe to modify these structures.
Alexandre Oliva's original patch and discussion:
https://sourceware.org/ml/libc-alpha/2016-09/msg00512.html
IFUNC relocation against definition in unrelocated shared library
will lead to segfault when the IFUNC function is called. This
patch allows such IFUNC relocations with a warning. This isn't
a real fix for
https://sourceware.org/bugzilla/show_bug.cgi?id=21041
It simply allows the program to load. The program will segfault
when longjmp is called.
* sysdeps/i386/dl-machine.h (elf_machine_rel): Replace
_dl_fatal_printf with _dl_error_printf for IFUNC relocation
against unrelocated shared library.
* sysdeps/x86_64/dl-machine.h (elf_machine_rela): Likewise.
A setxid program that uses a glibc with tunables disabled may pass on
GLIBC_TUNABLES as is to its child processes. If the child process
ends up using a different glibc that has tunables enabled, it will end
up getting access to unsafe tunables. To fix this, remove
GLIBC_TUNABLES from the environment for setxid process.
* sysdeps/generic/unsecvars.h: Add GLIBC_TUNABLES.
* elf/tst-env-setuid-tunables.c
(test_child_tunables)[!HAVE_TUNABLES]: Verify that
GLIBC_TUNABLES is removed in a setgid process.
Florian Weimer pointed out that we have three different kinds of
environment variables (and hence tunables):
1. Variables that are removed for setxid processes
2. Variables that are ignored in setxid processes but is passed on to
child processes
3. Variables that are passed on to child processes all the time
Tunables currently only does (2) and (3) when it should be doing (1)
for MALLOC_CHECK_. This patch enhances the is_secure flag in tunables
to an enum value that can specify which of the above three categories
the tunable (and its envvar alias) belongs to.
The default is for tunables to be in (1). Hence, all of the malloc
tunables barring MALLOC_CHECK_ are explicitly specified to belong to
category (2). There were discussions around abolishing category (2)
completely but we can do that as a separate exercise in 2.26.
Tested on x86_64 to verify that there are no regressions.
[BZ #21073]
* elf/dl-tunable-types.h (tunable_seclevel_t): New enum.
* elf/dl-tunables.c (tunables_strdup): Remove.
(get_next_env): Also return the previous envp.
(parse_tunables): Erase tunables of category
TUNABLES_SECLEVEL_SXID_ERASE.
(maybe_enable_malloc_check): Make MALLOC_CHECK_
TUNABLE_SECLEVEL_NONE if /etc/setuid-debug is accessible.
(__tunables_init)[TUNABLES_FRONTEND ==
TUNABLES_FRONTEND_valstring]: Update GLIBC_TUNABLES envvar
after parsing.
[TUNABLES_FRONTEND != TUNABLES_FRONTEND_valstring]: Erase
tunable envvars of category TUNABLES_SECLEVEL_SXID_ERASE.
* elf/dl-tunables.h (struct _tunable): Change member is_secure
to security_level.
* elf/dl-tunables.list: Add security_level annotations for all
tunables.
* scripts/gen-tunables.awk: Recognize and generate enum values
for security_level.
* elf/tst-env-setuid.c: New test case.
* elf/tst-env-setuid-tunables: new test case.
* elf/Makefile (tests-static): Add them.
Since memset-vec-unaligned-erms.S has VDUP_TO_VEC0_AND_SET_RETURN at
function entry, memset optimized for AVX2 and AVX512 will always use
ymm/zmm register. VZEROUPPER should be placed before ret in
L(stosb):
movq %rdx, %rcx
movzbl %sil, %eax
movq %rdi, %rdx
rep stosb
movq %rdx, %rax
ret
since it can be reached from
L(stosb_more_2x_vec):
cmpq $REP_STOSB_THRESHOLD, %rdx
ja L(stosb)
[BZ #21081]
* sysdeps/x86_64/multiarch/memset-vec-unaligned-erms.S
(L(stosb)): Add VZEROUPPER before ret.
The commit documents the ownership rules around 'struct pthread' and
when a thread can read or write to the descriptor. With those ownership
rules in place it becomes obvious that pd->stopped_start should not be
touched in several of the paths during thread startup, particularly so
for detached threads. In the case of detached threads, between the time
the thread is created by the OS kernel and the creating thread checks
pd->stopped_start, the detached thread might have already exited and the
memory for pd unmapped. As a regression test we add a simple test which
exercises this exact case by quickly creating detached threads with
large enough stacks to ensure the thread stack cache is bypassed and the
stacks are unmapped. Before the fix the testcase segfaults, after the
fix it works correctly and completes without issue.
For a detailed discussion see:
https://www.sourceware.org/ml/libc-alpha/2017-01/msg00505.html
The problem is basically that sys/ucontext.h is defining R0..R15
which happens to conflict with some packages like Firefox when
trying to build on SH.
The very same problem existed on arm back then [1] and it was fixed by
renaming R0..R15 to REG_R0..REG_R15. This patch imploy a similar
strategy for SH.
Checked on sh4-linux-gnu with run-built-tests=no and I also got reports
that it fixes Firefox build on Debian sh4.
* sysdeps/unix/sysv/linux/sh/sh3/ucontext_i.sym: Use new REG_R*
constants instead of the old R* ones.
* sysdeps/unix/sysv/linux/sh/sh4/ucontext_i.sym: Likewise.
* sysdeps/unix/sysv/linux/sh/sys/ucontext.h (NGPREG): Rename...
(NGREG): ... to this, to fit in with other architectures.
(gpregset_t): Use new NGREG macro.
[__USE_GNU]: Remove condition; all architectures other than tile
are unconditional.
(R*): Rename to REG_R*.