The POSIX function scandir calls scandirat, which is not a POSIX
function. This patch fixes this by making it use __scandirat and
making scandirat a weak alias. There are no changes for scandir64 /
scandirat64 because those are both _GNU_SOURCE-only functions so no
namespace issue arises for them.
Tested for x86_64 that the disassembly of installed shared libraries
is unchanged by this patch.
[BZ #17999]
* dirent/scandir.c [!SCANDIR] (SCANDIRAT): Define to __scandirat
instead of scandirat.
* dirent/scandirat.c [!SCANDIRAT] (SCANDIRAT): Likewise.
[!SCANDIRAT] (SCANDIRAT_WEAK_ALIAS): Define.
[SCANDIRAT_WEAK_ALIAS] (scandirat): Define as weak alias of
__scandirat.
* include/dirent.h (scandirat): Do not use libc_hidden_proto.
(__scandirat): Declare. Use libc_hidden_proto.
* conform/Makefile (test-xfail-POSIX2008/dirent.h/linknamespace):
Remove variable.
(test-xfail-XOPEN2K8/dirent.h/linknamespace): Likewise.
This patch fixes bug 15319, missing underflows from atan / atan2 when
the result of atan is very close to its small argument (or that of
atan2 is very close to the ratio of its arguments, which may be an
exact division).
The usual approach of doing an underflowing computation if the
computed result is subnormal is followed. For 32-bit x86, there are
extra complications: the inline __ieee754_atan2 in bits/mathinline.h
needs to be disabled for float and double because other libm functions
using it generally rely on getting proper underflow exceptions from
it, while the out-of-line functions have to remove excess range and
precision from the underflowing result so as to return an exact 0 in
the case where errno should be set for underflow to 0. (The failures
I saw without that are similar to those Carlos reported for other
functions, where I haven't seen a response to
<https://sourceware.org/ml/libc-alpha/2015-01/msg00485.html>
confirming if my diagnosis is correct. Arguably all libm functions
with float and double returns should remove excess range and
precision, but that's a separate matter.)
The x86_64 long double case reported in a comment in bug 15319 is not
a bug (it's an argument of LDBL_MIN, and x86_64 is an after-rounding
architecture so the correct IEEE result is not to raise underflow in
the given rounding mode, in addition to treating the result as an
exact LDBL_MIN being within the newly clarified documentation of
accuracy goals). I'm presuming that the fpatan instruction can be
trusted to raise appropriate exceptions when the (long double) result
underflows (after rounding) and so no changes are needed for x86 /
x86_64 long double functions here; empirically this is the case for
the cases covered in the testsuite, on my system.
Tested for x86_64, x86, powerpc and mips64. Only 32-bit x86 needs
ulps updates (for the changes to inlines meaning some functions no
longer get excess precision from their __ieee754_atan2* calls).
[BZ #15319]
* sysdeps/i386/fpu/e_atan2.S (dbl_min): New object.
(MO): New macro.
(__ieee754_atan2): For results with small absolute value, force
underflow exception and remove excess range and precision from
return value.
* sysdeps/i386/fpu/e_atan2f.S (flt_min): New object.
(MO): New macro.
(__ieee754_atan2f): For results with small absolute value, force
underflow exception and remove excess range and precision from
return value.
* sysdeps/i386/fpu/s_atan.S (dbl_min): New object.
(MO): New macro.
(__atan): For results with small absolute value, force underflow
exception and remove excess range and precision from return value.
* sysdeps/i386/fpu/s_atanf.S (flt_min): New object.
(MO): New macro.
(__atanf): For results with small absolute value, force underflow
exception and remove excess range and precision from return value.
* sysdeps/ieee754/dbl-64/e_atan2.c: Include <float.h> and
<math.h>.
(__ieee754_atan2): Force underflow exception for results with
small absolute value.
* sysdeps/ieee754/dbl-64/s_atan.c: Include <float.h> and
<math_private.h>.
(atan): Force underflow exception for results with small absolute
value.
* sysdeps/ieee754/flt-32/s_atanf.c: Include <float.h>.
(__atanf): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_atanl.c: Include <float.h> and
<math.h>.
(__atanl): Force underflow exception for results with small
absolute value.
* sysdeps/ieee754/ldbl-128ibm/s_atanl.c: Include <float.h>.
(__atanl): Force underflow exception for results with small
absolute value.
* sysdeps/x86/fpu/bits/mathinline.h
[!__SSE2_MATH__ && !__x86_64__ && __LIBC_INTERNAL_MATH_INLINES]
(__ieee754_atan2): Only define inline for long double.
* sysdeps/x86_64/fpu/multiarch/e_atan2.c
[HAVE_FMA4_SUPPORT || HAVE_AVX_SUPPORT]: Include <math.h>.
* math/auto-libm-test-in: Do not mark underflow exceptions as
possibly missing for bug 15319. Add more tests of atan2.
* math/auto-libm-test-out: Regenerated.
* math/libm-test.inc (casin_test_data): Do not mark underflow
exceptions as possibly missing for bug 15319.
(casinh_test_data): Likewise.
* sysdeps/i386/fpu/libm-test-ulps: Update.
The implementation of the (XSI POSIX) functions hsearch / hcreate /
hdestroy uses hsearch_r / hcreate_r / hdestroy_r, which are not POSIX
functions. This patch makes those into weak aliases for __*_r and
uses those names for the calls within libc.
Tested for x86_64 that the disassembly of installed shared libraries
is unchanged by this patch.
[BZ #17996]
* include/search.h (hcreate_r): Don't use libc_hidden_proto.
(hdestroy_r): Likewise.
(hsearch_r): Likewise.
(__hcreate_r): Declare and use libc_hidden_proto.
(__hdestroy_r): Likewise.
(__hsearch_r): Likewise.
* misc/hsearch.c (hsearch): Call __hsearch_r instead of hsearch_r.
(hcreate): Call __hcreate_r instead of hcreate_r.
(__hdestroy): Call __hdestroy_r instead of hdestroy_r.
* misc/hsearch_r.c (hcreate_r): Rename to __hcreate_r and define
as weak alias of __hcreate_r.
(hdestroy_r): Rename to __hdestroy_r and define as weak alias of
__hdestroy_r.
(hsearch_r): Rename to __hsearch_r and define as weak alias of
__hsearch_r.
* conform/Makefile (test-xfail-XPG3/search.h/linknamespace):
Remove variable.
(test-xfail-XPG4/search.h/linknamespace): Likewise.
(test-xfail-UNIX98/search.h/linknamespace): Likewise.
(test-xfail-XOPEN2K/search.h/linknamespace): Likewise.
(test-xfail-XOPEN2K8/search.h/linknamespace): Likewise.
posix_spawn (a standard POSIX function) brings in a use of getrlimit64
(not a standard POSIX function). This patch fixes this by using
__getrlimit64 and making getrlimit64 a weak alias.
This is more complicated than some such changes because of files that
define getrlimit64 in their own way using symbol versioning after
including the main sysdeps/unix/sysv/linux/getrlimit64.c with a
getrlimit macro defined. There are various existing patterns for such
cases in glibc; the one I've used here is that a getrlimit64 macro
disables the weak_alias / libc_hidden_weak calls, leaving it to the
including file to define the getrlimit64 name in whatever way is
appropriate.
Tested for x86_64 and x86 that installed stripped shared libraries are
unchanged by this patch.
[BZ #17991]
* include/sys/resource.h (__getrlimit64): Declare. Use
libc_hidden_proto.
* resource/getrlimit64.c (getrlimit64): Rename to __getrlimit64
and define as weak alias of __getrlimit64. Use libc_hidden_weak.
* sysdeps/posix/spawni.c (__spawni): Call __getrlimit64 instead of
getrlimit64.
* sysdeps/unix/sysv/linux/getrlimit64.c (getrlimit64): Rename to
__getrlimit64.
[!getrlimit64] (getrlimit64): Define as weak alias of
__getrlimit64. Use libc_hidden_weak.
* sysdeps/unix/sysv/linux/i386/getrlimit64.c (getrlimit64): Define
using __getrlimit64 not __new_getrlimit64.
(__GI_getrlimit64): Likewise.
* sysdeps/unix/sysv/linux/mips/getrlimit64.c (getrlimit64):
Likewise.
(__GI_getrlimit64): Likewise.
(__old_getrlimit64): Use __getrlimit64 not __new_getrlimit64.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/syscalls.list
(getrlimit): Add __getrlimit64 alias.
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list (getrlimit):
Likewise.
* conform/Makefile (test-xfail-XOPEN2K/spawn.h/linknamespace):
Remove variable.
(test-xfail-POSIX2008/spawn.h/linknamespace): Likewise.
(test-xfail-XOPEN2K8/spawn.h/linknamespace): Likewise.
Various remquo implementations produce a zero remainder with the wrong
sign (a zero remainder should always have the sign of the first
argument, as specified in IEEE 754) in round-downward mode, resulting
from the sign of 0 - 0. This patch checks for zero results and fixes
their sign accordingly.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #17987]
* sysdeps/ieee754/dbl-64/s_remquo.c (__remquo): Ensure sign of
zero result does not depend on the sign resulting from
subtraction.
* sysdeps/ieee754/dbl-64/wordsize-64/s_remquo.c (__remquo):
Likewise.
* sysdeps/ieee754/flt-32/s_remquof.c (__remquof): Likewise.
* sysdeps/ieee754/ldbl-128/s_remquol.c (__remquol): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise.
* sysdeps/ieee754/ldbl-96/s_remquol.c (__remquol): Likewise.
* math/libm-test.inc (remquo_test_data): Add more tests.
Various remquo implementations, when computing the last three bits of
the quotient, have spurious overflows when 4 times the second argument
to remquo overflows. These overflows can in turn cause bad results in
rounding modes where that overflow results in a finite value. This
patch adds tests to avoid the problem multiplications in cases where
they would overflow, similar to those that control an earlier
multiplication by 8.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #17978]
* sysdeps/ieee754/dbl-64/s_remquo.c (__remquo): Do not form
products 4 * y and 2 * y where those would overflow.
* sysdeps/ieee754/dbl-64/wordsize-64/s_remquo.c (__remquo):
Likewise.
* sysdeps/ieee754/flt-32/s_remquof.c (__remquof): Likewise.
* sysdeps/ieee754/ldbl-128/s_remquol.c (__remquol): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise.
* sysdeps/ieee754/ldbl-96/s_remquol.c (__remquol): Likewise.
* math/libm-test.inc (remquo_test_data): Add more tests.
Remove IA64 PAGE_SIZE related macros as PAGE_SIZE is not defined.
Also remove macros that are only used for BFD's trad-core support
which is not relavant for IA64 according to the thread starting
here:
https://sourceware.org/ml/libc-ports/2013-11/msg00028.html
This patch is neither built nor tested but is equivalent to a MIPS
patch for the same fix.
The dbl-64/wordsize-64 remquo implementation follows similar logic to
various other implementations, but where that logic computes some
absolute values, it wrongly uses a previously computed bit-pattern for
the absolute value of the first argument, where actually it needs the
absolute value of the first argument mod 8 times the second. This
patch fixes it to compute the correct absolute value.
The integer quotient result of remquo is only specified mod 8
(including its sign); architecture-specific versions may well vary in
what results they give for higher bits of that result (and indeed bug
17569 gives an example correct result from __builtin_remquo giving 9
for that result, where the particular glibc implementation used in
that bug report would give 1 after this fix). Thus, this patch adapts
the tests of remquo to test that result only mod 8, to allow for such
variation when tests with higher quotient are included.
Tested for x86_64 and x86.
[BZ #17569]
* sysdeps/ieee754/dbl-64/wordsize-64/s_remquo.c (__remquo):
Compute absolute value of x as modified by fmod, not original
value of x.
* math/libm-test.inc (RUN_TEST_ffI_f1): Rename to
RUN_TEST_ffI_f1_mod8. Check extra return value mod 8.
(RUN_TEST_LOOP_ffI_f1): Rename to RUN_TEST_LOOP_ffI_f1_mod8. Call
RUN_TEST_ffI_f1_mod8.
(remquo_test_data): Add more tests.
Similarly to sqrt in
<https://sourceware.org/ml/libc-alpha/2015-02/msg00353.html>, the
powerpc sqrtf implementation for when _ARCH_PPCSQ is not defined also
relies on a * b + c being contracted into a fused multiply-add.
Although this contraction is not explicitly disabled for e_sqrtf.c, it
still seems appropriate to make the file explicit about its
requirements by using __builtin_fmaf; this patch does so.
Furthermore, it turns out that doing so fixes the observed inaccuracy
and missing exceptions (that is, that without explicit __builtin_fmaf
usage, it was not being compiled as intended).
Tested for powerpc32 (hard float).
[BZ #17967]
* sysdeps/powerpc/fpu/e_sqrtf.c (__slow_ieee754_sqrtf): Use
__builtin_fmaf instead of relying on contraction of a * b + c.
As Adhemerval noted in
<https://sourceware.org/ml/libc-alpha/2015-01/msg00451.html>, the
powerpc sqrt implementation for when _ARCH_PPCSQ is not defined is
inaccurate in some cases.
The problem is that this code relies on fused multiply-add, and relies
on the compiler contracting a * b + c to get a fused operation. But
sysdeps/ieee754/dbl-64/Makefile disables contraction for e_sqrt.c,
because the implementation in that directory relies on *not* having
contracted operations.
While it would be possible to arrange makefiles so that an earlier
sysdeps directory can disable the setting in
sysdeps/ieee754/dbl-64/Makefile, it seems a lot cleaner to make the
dependence on fused operations explicit in the .c file. GCC 4.6
introduced support for __builtin_fma on powerpc and other
architectures with such instructions, so we can rely on that; this
patch duly makes the code use __builtin_fma for all such fused
operations.
Tested for powerpc32 (hard float).
2015-02-12 Joseph Myers <joseph@codesourcery.com>
[BZ #17964]
* sysdeps/powerpc/fpu/e_sqrt.c (__slow_ieee754_sqrt): Use
__builtin_fma instead of relying on contraction of a * b + c.
The tv_sec is of type time_t in both struct timeval and struct timespec.
This matches the implementation and also the relevant standard (checked
C11 for timespec and opengroup for timeval).
This patch fixes the remaining part of bug 16560, spurious underflows
from exp2 of arguments close to 0 (when the result is close to 1, so
should not underflow), by just using 1+x instead of a more complicated
calculation when the argument is sufficiently small.
Tested for x86_64, x86 and mips64.
[BZ #16560]
* math/e_exp2l.c [LDBL_MANT_DIG == 106] (LDBL_EPSILON): Undefine
and redefine.
(__ieee754_exp2l): Do not multiply small fractional parts by
M_LN2l.
* sysdeps/i386/fpu/e_exp2l.S (__ieee754_exp2l): Just add 1 to
small argument.
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Likewise.
* sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Likewise.
* sysdeps/x86_64/fpu/e_exp2l.S (__ieee754_exp2l): Likewise.
* math/auto-libm-test-in: Add more tests of exp2.
* math/auto-libm-test-out: Regenerated.
pthread_mutexattr_settype adds PTHREAD_MUTEX_NO_ELISION_NP to kind,
which is an internal flag that pthread_mutexattr_gettype shouldn't
expose, since pthread_mutexattr_settype wouldn't accept it.
This patch makes sincos set errno to EDOM when passed an infinity,
similarly to sin and cos.
Tested for x86_64, x86, powerpc and mips64. I don't know if the
architecture-specific implementations for ia64 and m68k might need
corresponding fixes.
2015-02-11 Joseph Myers <joseph@codesourcery.com>
[BZ #15467]
* sysdeps/ieee754/dbl-64/s_sincos.c: Include <errno.h>.
(__sincos): Set errno to EDOM for infinite argument.
* sysdeps/ieee754/flt-32/s_sincosf.c: Include <errno.h>.
(SINCOSF_FUNC): Set errno to EDOM for infinite argument.
* sysdeps/ieee754/ldbl-128/s_sincosl.c: Include <errno.h>.
(__sincosl): Set errno to EDOM for infinite argument.
* sysdeps/ieee754/ldbl-128ibm/s_sincosl.c: Include <errno.h>.
(__sincosl): Set errno to EDOM for infinite argument.
* sysdeps/ieee754/ldbl-96/s_sincosl.c: Include <errno.h>.
(__sincosl): Set errno to EDOM for infinite argument.
* math/libm-test.inc (sincos_test_data): Test errno setting.
soft-fp's _FP_FMA fails to set the result's exponent for cases where
the result of the multiplication is 0, yielding incorrect (arbitrary,
depending on uninitialized values) results for those cases. This
affects libm for architectures using soft-fp to implement fma. This
patch adds the exponent setting and tests for this case.
Tested for ARM soft-float (which uses soft-fp fma), x86_64 and x86 (to
verify not introducing new libm test failures there).
(This bug showed up in testing my patch to move the Linux kernel to
current soft-fp. math/Makefile has "override CFLAGS +=
-Wno-uninitialized" which would have stopped compiler warnings from
showing up this problem, although I wouldn't be surprised if removing
that shows spurious warnings from this code, if the compiler fails to
follow that various cases where the exponent is uninitialized don't
need it initialized because the class is set to a value meaning the
uninitialized exponent isn't used.)
[BZ #17932]
* soft-fp/op-common.h (_FP_FMA): Set exponent of result in case
where multiplication results in zero and third argument is finite
and nonzero.
* math/auto-libm-test-in: Add more tests of fma.
* math/auto-libm-test-out: Regenerated.
BZ #16618
Under certain conditions wscanf can allocate too little memory for the
to-be-scanned arguments and overflow the allocated buffer. The
implementation now correctly computes the required buffer size when
using malloc.
A regression test was added to tst-sscanf.
memcpy with unaligned 256-bit AVX register loads/stores are slow on older
processorsl like Sandy Bridge. This patch adds bit_AVX_Fast_Unaligned_Load
and sets it only when AVX2 is available.
[BZ #17801]
* sysdeps/x86_64/multiarch/init-arch.c (__init_cpu_features):
Set the bit_AVX_Fast_Unaligned_Load bit for AVX2.
* sysdeps/x86_64/multiarch/init-arch.h (bit_AVX_Fast_Unaligned_Load):
New.
(index_AVX_Fast_Unaligned_Load): Likewise.
(HAS_AVX_FAST_UNALIGNED_LOAD): Likewise.
* sysdeps/x86_64/multiarch/memcpy.S (__new_memcpy): Check the
bit_AVX_Fast_Unaligned_Load bit instead of the bit_AVX_Usable bit.
* sysdeps/x86_64/multiarch/memcpy_chk.S (__memcpy_chk): Likewise.
* sysdeps/x86_64/multiarch/mempcpy.S (__mempcpy): Likewise.
* sysdeps/x86_64/multiarch/mempcpy_chk.S (__mempcpy_chk): Likewise.
* sysdeps/x86_64/multiarch/memmove.c (__libc_memmove): Replace
HAS_AVX with HAS_AVX_FAST_UNALIGNED_LOAD.
* sysdeps/x86_64/multiarch/memmove_chk.c (__memmove_chk): Likewise.
The padding bytes in the statsdata struct are not initialized, due to
which valgrind throws a warning:
==11384== Memcheck, a memory error detector
==11384== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==11384== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==11384== Command: nscd -d
==11384==
Fri 25 Apr 2014 10:34:53 AM CEST - 11384: handle_request: request received (Version = 2) from PID 11396
Fri 25 Apr 2014 10:34:53 AM CEST - 11384: GETSTAT
==11384== Thread 6:
==11384== Syscall param socketcall.sendto(msg) points to uninitialised byte(s)
==11384== at 0x4E4ACDC: send (in /lib64/libpthread-2.12.so)
==11384== by 0x11AF6B: send_stats (in /usr/sbin/nscd)
==11384== by 0x112F75: nscd_run_worker (in /usr/sbin/nscd)
==11384== by 0x4E439D0: start_thread (in /lib64/libpthread-2.12.so)
==11384== by 0x599AB6C: clone (in /lib64/libc-2.12.so)
==11384== Address 0x15708395 is on thread 6's stack
Fix the warning by initializing the structure.
This patch fixes a bug introduced by 18f2945ae9216cfc, where it optimizes
the FPSCR set by just issuing a mtfs instruction if new flag is different
from older one. The issue is a typo, where the new flag should the the
new value, instead of the old one.
It fixes BZ#17885.
Some powerpc64 processors (e5500 core for instance) does not provide the
fsqrt instruction, however current check to use in math_private.h is
__WORDSIZE and _ARCH_PWR4 (ISA 2.02). This is patch change it to use
the compiler flag _ARCH_PPCSQ (which is the same condition GCC uses to
decide whether to generate fsqrt instruction).
It fixes BZ#16576.
GLIBC memset optimization for POWER8 uses the '.machine power8'
directive, which is only supported officially on binutils 2.24+. This
causes a build failure on older binutils.
Since the requirement of .machine power8 is to correctly assembly the
'mtvsrd' instruction and it is already handled by the MTVSRD_V1_R4
macro, there is no really needed of using it.
The patch replaces the power8 with power7 for .machine directive.
It fixes BZ#17869.
This patch fix the elf/ifuncmain6pie failure when building with GCC
4.9+. For some reason, the compiler removes the branch taken code at
resolve_ifunc (sysdeps/powerpc/powerpc64/dl-machine.h) as dead-code
and thus the testcase fails because the ifunc resolves branches to an
invalid memory location. It fixes by explicit adding a dependency of
value based on odp variable to avoid compiler optimization.
It fixes BZ#17868.
This patch replaces unsigned long int and 1UL with uint64_t and
(uint64_t) 1 to support ILP32 targets like x32.
[BZ #17870]
* nptl/sem_post.c (__new_sem_post): Replace unsigned long int
with uint64_t.
* nptl/sem_waitcommon.c (__sem_wait_cleanup): Replace 1UL with
(uint64_t) 1.
(__new_sem_wait_slow): Replace unsigned long int with uint64_t.
Replace 1UL with (uint64_t) 1.
* sysdeps/nptl/internaltypes.h (new_sem): Replace unsigned long
int with uint64_t.
This patch fix powerpc __get_clockfreq racy and cancel-safe issues by
dropping internal static cache and by using nocancel file operations.
The vDSO failure check is also removed, since kernel code does not
return an error (it cleans cr0.so bit on function return) and the static
code (to read value /proc) now uses non-cancellable calls.
The ability to recursively call dlopen is useful for malloc
implementations that wish to load other dynamic modules that
implement reentrant/AS-safe functions to use in their own
implementation.
Given that a user malloc implementation may be called by an
ongoing dlopen to allocate memory the user malloc
implementation interrupts dlopen and if it calls dlopen again
that's a reentrant call.
This patch fixes the issues with the ld.so.cache mapping
and the _r_debug assertion which prevent this from working
as expected.
See:
https://sourceware.org/ml/libc-alpha/2014-12/msg00446.html
This commit fixes semaphore destruction by either using 64b atomic
operations (where available), or by using two separate fields when only
32b atomic operations are available. In the latter case, we keep a
conservative estimate of whether there are any waiting threads in one
bit of the field that counts the number of available tokens, thus
allowing sem_post to atomically both add a token and determine whether
it needs to call futex_wake.
See:
https://sourceware.org/ml/libc-alpha/2014-12/msg00155.html
This patch adds an optimized POWER8 strncmp. The implementation focus
on speeding up unaligned cases follwing the ideas of power8 strcmp.
The algorithm first check the initial 16 bytes, then align the first
function source and uses unaligned loads on second argument only.
Aditional checks for page boundaries are done for unaligned cases
(where sources alignment are different).
This patch adds an optimized POWER8 strcmp using unaligned accesses.
The algorithm first check the initial 16 bytes, then align the first
function source and uses unaligned loads on second argument only.
Aditional checks for page boundaries are done for unaligned cases
This patch adds an optimized POWER8 st{r,p}ncpy using unaligned accesses.
It shows 10%-80% improvement over the optimized POWER7 one that uses
only aligned accesses, specially on unaligned inputs.
The algorithm first read and check 16 bytes (if inputs do not cross a 4K
page size). The it realign source to 16-bytes and issue a 16 bytes read
and compare loop to speedup null byte checks for large strings. Also,
different from POWER7 optimization, the null pad is done inline in the
implementation using possible unaligned accesses, instead of realying on
a memset call. Special case is added for page cross reads.
This patch adds an optimized POWER8 strcpy using unaligned accesses.
For strings up to 16 bytes the implementation first calculate the
string size, like strlen, and issues a memcpy. For larger strings,
source is first aligned to 16 bytes and then tested over a loop that
reads 16 bytes am combine the cmpb results for speedup. Special case is
added for page cross reads.
It shows 30%-60% improvement over the optimized POWER7 one that uses
only aligned accesses.
[Modified from the original email by Siddhesh Poyarekar]
This patch solves bug #16009 by implementing an additional path in
strxfrm that does not depend on caching the weight and rule indices.
In detail the following changed:
* The old main loop was factored out of strxfrm_l into the function
do_xfrm_cached to be able to alternativly use the non-caching version
do_xfrm.
* strxfrm_l allocates a a fixed size array on the stack. If this is not
sufficiant to store the weight and rule indices, the non-caching path is
taken. As the cache size is not dependent on the input there can be no
problems with integer overflows or stack allocations greater than
__MAX_ALLOCA_CUTOFF. Note that malloc-ing is not possible because the
definition of strxfrm does not allow an oom errorhandling.
* The uncached path determines the weight and rule index for every char
and for every pass again.
* Passing all the locale data array by array resulted in very long
parameter lists, so I introduced a structure that holds them.
* Checking for zero src string has been moved a bit upwards, it is
before the locale data initialization now.
* To verify that the non-caching path works correct I added a test run
to localedata/sort-test.sh & localedata/xfrm-test.c where all strings
are patched up with spaces so that they are too large for the caching path.
The ldbl-96 implementation of scalblnl (used for x86_64 and ia64) uses
a condition k <= -63 to determine when a standard underflowing result
tiny*__copysignl(tiny,x) should be returned. However, that condition
corresponds to values with exponent -16446 or less, and in the case of
-16446, the correct result for round-to-nearest depends on whether the
value is exactly 0x1p-16446 (half the least subnormal) or more than
that. This patch fixes the bug by changing the condition to k <= -64
and accordingly adjusting the exponent by 64 not 63 when converting to
a normal value.
Tested for x86_64.
[BZ #17803]
* sysdeps/ieee754/ldbl-96/s_scalblnl.c (twom63): Rename to
twom64. Adjust value to 0x1p-64L.
(__scalblnl): Only return standard underflowing result for K <=
-64 not K <= -63; adjust exponent for underflowing result by 64
not 63.
* math/libm-test.inc (scalbn_test_data): Add more tests.
(scalbln_test_data): Likewise.
The ldbl-96 implementation of scalblnl (used for x86_64 and ia64) is
incorrect for subnormal arguments (this is a separate bug from bug
17803, which is about underflowing results). There are two problems
with the adjustments of subnormal arguments: the "two63" variable
multiplied by is actually 0x1p52L not 0x1p63L, so is insufficient to
make values normal, and then GET_LDOUBLE_EXP(es,x), used to extract
the new exponent, extracts it into a variable that isn't used, while
the value taken to by the new exponent is wrongly taken from the high
part of the mantissa before the adjustment (hx). This patch fixes
both those problems and adds appropriate tests.
Tested for x86_64.
[BZ #17834]
* sysdeps/ieee754/ldbl-96/s_scalblnl.c (two63): Change value to
0x1p63L.
(__scalblnl): Get new exponent of adjusted subnormal value from ES
not HX.
* math/libm-test.inc (scalbn_test_data): Add more tests.
(scalbln_test_data): Likewise.
This patch adds support for lock elision using ISA 2.07 hardware
transactional memory instructions for pthread_mutex primitives.
Similar to s390 version, the for elision logic defined in
'force-elision.h' is only enabled if ENABLE_LOCK_ELISION is defined.
Also, the lock elision code should be able to be built even with
a compiler that does not provide HTM support with builtins.
However I have noted the performance is sub-optimal due scheduling
pressures.
Microblaze apparently has a variable page size (see thread below) and
should not hard-code any page-size related macros.
Also remove macros that are only used for BFD's trad-core support
which is not relavant for microblaze also according to the thread
starting here:
https://sourceware.org/ml/libc-ports/2013-11/msg00028.html
This patch is neither built nor tested but mirrors a MIPS patch that
fixes the same issue.
Thanks,
Matthew
* sysdepsysdeps/unix/sysv/linux/microblaze/sys/user.h
(PAGE_SHIFT, PAGE_SIZE, PAGE_MASK, NBPG, UPAGES): Remove.
(HOST_TEXT_START_ADDR, HOST_STACK_END_ADDR): Remove.
Signed-off-by: David Holsgrove <david.holsgrove@xilinx.com>
Concluding the fixes for C90 libm functions calling C99 fe* functions,
this patch fixes the case of feupdateenv by making it a weak alias for
__feupdateenv and making the affected code call __feupdateenv.
Tested for x86_64 (testsuite, and that installed stripped shared
libraries are unchanged by the patch). Also tested for ARM
(soft-float) that the math.h linknamespace tests now pass.
[BZ #17748]
* include/fenv.h (__feupdateenv): Use libm_hidden_proto.
* math/feupdateenv.c (__feupdateenv): Use libm_hidden_def.
* sysdeps/aarch64/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/alpha/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/arm/feupdateenv.c (feupdateenv): Rename to __feupdateenv
and define as weak alias of __feupdateenv. Use libm_hidden_weak.
* sysdeps/hppa/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/i386/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/ia64/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/m68k/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/mips/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/powerpc/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/powerpc/nofpu/feupdateenv.c (__feupdateenv): Likewise.
* sysdeps/powerpc/powerpc32/e500/nofpu/feupdateenv.c
(__feupdateenv): Likewise.
* sysdeps/s390/fpu/feupdateenv.c (feupdateenv): Rename to
__feupdateenv and define as weak alias of __feupdateenv. Use
libm_hidden_weak.
* sysdeps/sh/sh4/fpu/feupdateenv.c (feupdateenv): Likewise.
* sysdeps/sparc/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/tile/math_private.h (__feupdateenv): New inline
function.
* sysdeps/x86_64/fpu/feupdateenv.c (__feupdateenv): Use
libm_hidden_def.
* sysdeps/generic/math_private.h (default_libc_feupdateenv): Call
__feupdateenv instead of feupdateenv.
(default_libc_feupdateenv_test): Likewise.
(libc_feresetround_ctx): Likewise.