This patch adds support of preadv2 and pwritev2 which are similar to
preadv/pwritev but with an extra flag argument. As for preadv/pwritev
both interfaces are added a non-standard GNU API.
For default 'posix' implementation trying to emulate the Linux supported
flags is troublesome:
* We can not temporary change the file state of the O_DSYNC and O_SYNC
flags to emulate RWF_{D}SYNC (attempts to change the state of using
fcntl are silently ignored).
* IOCB_HIPRI requires the file opened in O_DIRECT and uses an internal
semantic not provided by any other flag (O_NONBLOCK for instance).
So default sysdeps/posix implementations fails with EOPNOTSUPP for any non
supported flag (which are none currently) calls generic preadv/pwritev.
Basically this implementation supports only preadv2 called as preadv (with
flags sets to 0).
The Linux one uses the preadv2/pwritev2 syscall if defined, otherwise it
call preadv/writev. Instead of using the previous __ASSUME_* to
unconditionally issue the syscall (and avoid building the fallback routine),
it call pread/write if the preadv2/pwritev2 syscalls fails. The idea
is just avoid adding another __ASSUME_* and checking each architecture
on every kernel bump and simplify code conditionals.
Checked on x86_64-linux-gnu and on i686-linux-gnu and a check with
run-built-tests=no on aarch64-linux-gnu, alpha-linux-gnu, arm-linux-gnueabihf,
ia64-linux-gnu, m68k-linux-gnu, microblaze-linux-gnu, mips{64,64n32}-linux-gnu,
nios2-linux-gnu, powerpc{64,64le}-linux-gnu, s390{x}-linux-gnu,
sparc{64,v9}-linux-gnu, tile{gx,pro}-linux-gnu, and sh4-linux-gnu (all using
gcc 6.3).
* NEWS: Add note about pwritev2 and preadv2 inclusion.
* misc/Makefile (routines): Add preadv2, preadv64v2, pwritev2, and
pwritev64v2.
(tests): Add tst-preadvwritev2 and tst-preadvwritev64v2.
* misc/Versions (GLIBC_2.26): Add preadv2, preadv64v2, pwritev2, and
pwritev64v2.
* misc/preadv2.c: New file.
* misc/preadv64v2.c: Likewise.
* misc/pwritev2.c: Likewise.
* misc/pwritev64v2.c: Likewise.
* misc/tst-preadvwritev2.c: Likewise.
* misc/tst-preadvwritev64v2.c: Likewise.
* manual/llio.texi: Add preadv2 and pwritev2 documentation.
* misc/sys/uio.h [__USE_GNU && !__USE_FILE_OFFSET64] (preadv2): New
prototype.
[__USE_GNU && !__USE_FILE_OFFSET64] (pwritev2): Likewise.
[__USE_GNU && __USE_FILE_OFFSET64] (preadv64v2): Likewise.
[__USE_GNU && __USE_FILE_OFFSET64] (pwritev64v2): Likewise.
* misc/tst-preadvwritev-common.c (PREADV): Define if not defined.
(PWRITEV): Likewise.
(do_test_with_offset): Use PREADV and PWRITEV macros and check for
ENOSYS.
* nptl/tst-cancel4.c (tf_pwritev2): New test.
(tf_preadv2): Likewise.
(tf_fsync): Add tf_pwritev2 and tf_preadv2.
* sysdeps/posix/preadv2.c: Likewise.
* sysdeps/posix/preadv64v2.c: Likewise.
* sysdeps/posix/pwritev2.c: Likewise.
* sysdeps/posix/pwritev64v2.c: Likewise.
* sysdeps/unix/sysv/linux/kernel-features.h: Add comment for syscall
support in kernel.
* sysdeps/unix/sysv/linux/preadv2.c: Likewise.
* sysdeps/unix/sysv/linux/preadv64v2.c: Likewise.
* sysdeps/unix/sysv/linux/pwritev2.c: Likewise.
* sysdeps/unix/sysv/linux/pwritev64v2.c: Likewise.
* sysdeps/unix/sysv/linux/preadv.c (preadv): Add libc_hidden_def.
* sysdeps/unix/sysv/linux/preadv64.c (preadv64): Likewise.
* sysdeps/unix/sysv/linux/pwritev.c (pwritev): Likewise.
* sysdeps/unix/sysv/linux/pwritev64.c (pwritev64): Likewise.
* sysdeps/unix/sysv/linux/bits/uio.h: Add supported preadv2/pwritev2
support flags on Linux.
* sysdeps/unix/sysv/linux/aarch64/libc.abilist (GLIBC_2.26): Add
preadv2, preadv64v2, pwritev2, pwritev64v2.
* sysdeps/unix/sysv/linux/alpha/libc.abilist (GLIBC_2.26): Likewise.
* sysdeps/unix/sysv/linux/arm/libc.abilist (GLIBC_2.26): Likewise.
* sysdeps/unix/sysv/linux/hppa/libc.abilist (GLIBC_2.26): Likewise.
* sysdeps/unix/sysv/linux/i386/libc.abilist (GLIBC_2.26): Likewise.
* sysdeps/unix/sysv/linux/ia64/libc.abilist (GLIBC_2.26): Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/microblaze/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/fpu/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/nofpu/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/nios2/libc.abilist (GLIBC_2.26): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libc.abilist
(GLIBC_2.26): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libc.abilist
(GLIBC_2.26): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist
(GLIBC_2.26): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/sh/libc.abilist (GLIBC_2.26): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/sysv/linux/tile/tilegx/tilegx32/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/sysv/linux/tile/tilegx/tilegx64/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libc.abilist (GLIBC_2.26):
Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist (GLIBC_2.26):
Likewise.
The following tests depend on ENABLE_LOCK_ELISION, which is only
available on tests-internal.
- nptl/tst-mutex8
- nptl/tst-mutex8-static
- nptl/tst-mutexpi8
- nptl/tst-mutexpi8-static
* nptl/Makefile (tests): Move nptl/tst-mutex8, nptl/tst-mutex8-static,
nptl/tst-mutexpi8 and nptl/tst-mutexpi8-static to...
(tests-internal): ... here.
These __need macros are only used internally, by nptl/descr.h.
However, including all of resolv.h from descr.h causes build failures
due to resolv.h's dozens of pseudo-struct-field macros, some of which
collide with struct fields in NPTL internal data structures.
Similarly, including all of list.h from descr.h produces an include
cycle, atomic.h -> atomic-machine.h -> tls.h -> descr.h -> list.h ->
atomic.h, and then list.h tries to use atomic.h macros that haven't
been defined yet. So we do need mini-headers for these. In the
list.h case I called it include/list_t.h since it isn't going to be
installed.
* resolv/resolv.h: Remove __need_res_state logic.
Move definition of res_state and related constants to ...
* resolv/bits/types/res_state.h: ...this new file.
* resolv/Makefile: Install bits/types/res_state.h.
* include/bits/types/res_state.h: New wrapper.
* include/list.h: Remove __need_list_t logic.
Move definition of list_t to ...
* include/list_t.h: ...this new file.
* nptl/descr.h: Include list_t.h and bits/types/res_state.h
instead of list.h and resolv.h.
This patch consolidates the fsync Linux syscall generation on
sysdeps/unix/sysv/linux/fsync.c. It basically removes it from
architectures auto-generation list.
For arm it also removes the __errno_location call since fsync
is not called with SYSCALL_CANCEL with call arch-specific
INLINE_SYSCALL macro which in turn will call __set_errno macro
(and setting errno directly).
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* misc/Makefile (CFLAGS-fsync.c): New flag.
* nptl/Makefile (CFLAGS-fsync.c): Likewise.
* sysdeps/unix/syscalls.list (fsync): Remove from auto-generation
syscall list.
* sysdeps/unix/sysv/linux/fsync.c: New file.
* sysdeps/unix/sysv/linux/arm/localplt.data [libpthread.so]
(__errno_location): Remove.
This patch consolidates the fdatasync Linux syscall generation on
sysdeps/unix/sysv/linux/fdatasync.c. It basically removes it from
architectures auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* misc/makefile (CFLAGS-datasync.c): New flag.
* nptl/makefile (CFLAGS-datasync.c): Likewise.
* sysdeps/unix/sysv/linux/syscalls.list (fdatasync): Remove from
auto-generation syscall list.
* sysdeps/unix/sysv/linux/fdatasync.c: New file.
This patch consolidates the msync Linux syscall generation on
sysdeps/unix/sysv/linux/msync.c. It basically removes it from
architectures auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* misc/Makefile (CFLAGS-msync.c): New rule.
* nptl/Makefile (CFLAGS-msync.c): Likewise.
* sysdeps/unix/syscalls.list: Remove msync from auto-generation list.
* sysdeps/unix/sysv/linux/msync.c: New file.
This patch consolidates the sigsuspend Linux syscall generation on
sysdeps/unix/sysv/linux/sigsuspend.c. It basically removes the alpha
assembly version which call the old sigsusped interface using only
the first doubleword from sigset. Current minimum supported kernel
on alpha (3.2) enforces rt_sigsuspend on the architecture
(__ARCH_WANT_SYS_RT_SIGSUSPEND option on kernel), so it is possible
to use the default implementation.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* sysdeps/unix/sysv/linux/alpha/sigsuspend.S: Remove file.
* sysdeps/unix/sysv/linux/sigsuspend.c: Simplify include list.
* nptl/Makefile (CFLAGS-sigsuspend.c): New rule.
* sysdeps/unix/sysv/linux/sparc/sparc64/Makefile
(CFLAGS-sigsuspend.c): Remove rule.
This patch consolidates the nanosleep Linux syscall generation on
sysdeps/unix/sysv/linux/nanosleep.c. It basically removes it from
architectures auto-generation list.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu,
sparc64-linux-gnu, and sparcv9-linux-gnu.
* nptl/Makefile (CFLAGS-nanosleep.c): New rule.
* posix/Makefile (CFLAGS-nanosleep.c): Likewise.
* sysdeps/unix/sysv/linux/nanosleep.c: New file.
* sysdeps/unix/sysv/linux/syscalls.list: Remove nanosleep from
auto-generated list.
This patch adds a new build module called 'testsuite'.
IS_IN (testsuite) implies _ISOMAC, as do IS_IN_build and __cplusplus
(which means several ad-hoc tests for __cplusplus can go away).
libc-symbols.h now suppresses almost all of *itself* when _ISOMAC is
defined; in particular, _ISOMAC mode does not get config.h
automatically anymore.
There are still quite a few tests that need to see internal gunk of
one variety or another. For them, we now have 'tests-internal' and
'test-internal-extras'; files in this category will still be compiled
with MODULE_NAME=nonlib, and everything proceeds as it always has.
The bulk of this patch is moving tests from 'tests' to
'tests-internal'. There is also 'tests-static-internal', which has
the same effect on files in 'tests-static', and 'modules-names-tests',
which has the *inverse* effect on files in 'modules-names' (it's
inverted because most of the things in modules-names are *not* tests).
For both of these, the file must appear in *both* the new variable and
the old one.
There is also now a special case for when libc-symbols.h is included
without MODULE_NAME being defined at all. (This happens during the
creation of libc-modules.h, and also when preprocessing Versions
files.) When this happens, IS_IN is set to be always false and
_ISOMAC is *not* defined, which was the status quo, but now it's
explicit.
The remaining changes to C source files in this patch seemed likely to
cause problems in the absence of the main change. They should be
relatively self-explanatory. In a few cases I duplicated a definition
from an internal header rather than move the test to tests-internal;
this was a judgement call each time and I'm happy to change those
however reviewers feel is more appropriate.
* Makerules: New subdir configuration variables 'tests-internal'
and 'test-internal-extras'. Test files in these categories will
still be compiled with MODULE_NAME=nonlib. Test files in the
existing categories (tests, xtests, test-srcs, test-extras) are
now compiled with MODULE_NAME=testsuite.
New subdir configuration variable 'modules-names-tests'. Files
which are in both 'modules-names' and 'modules-names-tests' will
be compiled with MODULE_NAME=testsuite instead of
MODULE_NAME=extramodules.
(gen-as-const-headers): Move to tests-internal.
(do-tests-clean, common-mostlyclean): Support tests-internal.
* Makeconfig (built-modules): Add testsuite.
* Makefile: Change libof-check-installed-headers-c and
libof-check-installed-headers-cxx to 'testsuite'.
* Rules: Likewise. Support tests-internal.
* benchtests/strcoll-inputs/filelist#en_US.UTF-8:
Remove extra-modules.mk.
* config.h.in: Don't check for __OPTIMIZE__ or __FAST_MATH__ here.
* include/libc-symbols.h: Move definitions of _GNU_SOURCE,
PASTE_NAME, PASTE_NAME1, IN_MODULE, IS_IN, and IS_IN_LIB to the
very top of the file and rationalize their order.
If MODULE_NAME is not defined at all, define IS_IN to always be
false, and don't define _ISOMAC.
If any of IS_IN (testsuite), IS_IN_build, or __cplusplus are
true, define _ISOMAC and suppress everything else in this file,
starting with the inclusion of config.h.
Do check for inappropriate definitions of __OPTIMIZE__ and
__FAST_MATH__ here, but only if _ISOMAC is not defined.
Correct some out-of-date commentary.
* include/math.h: If _ISOMAC is defined, undefine NO_LONG_DOUBLE
and _Mlong_double_ before including math.h.
* include/string.h: If _ISOMAC is defined, don't expose
_STRING_ARCH_unaligned. Move a comment to a more appropriate
location.
* include/errno.h, include/stdio.h, include/stdlib.h, include/string.h
* include/time.h, include/unistd.h, include/wchar.h: No need to
check __cplusplus nor use __BEGIN_DECLS/__END_DECLS.
* misc/sys/cdefs.h (__NTHNL): New macro.
* sysdeps/m68k/m680x0/fpu/bits/mathinline.h
(__m81_defun): Use __NTHNL to avoid errors with GCC 6.
* elf/tst-env-setuid-tunables.c: Include config.h with _LIBC
defined, for HAVE_TUNABLES.
* inet/tst-checks-posix.c: No need to define _ISOMAC.
* intl/tst-gettext2.c: Provide own definition of N_.
* math/test-signgam-finite-c99.c: No need to define _ISOMAC.
* math/test-signgam-main.c: No need to define _ISOMAC.
* stdlib/tst-strtod.c: Convert to test-driver. Split locale_test to...
* stdlib/tst-strtod1i.c: ...this new file.
* stdlib/tst-strtod5.c: Convert to test-driver and add copyright notice.
Split tests of __strtod_internal to...
* stdlib/tst-strtod5i.c: ...this new file.
* string/test-string.h: Include stdint.h. Duplicate definition of
inhibit_loop_to_libcall here (from libc-symbols.h).
* string/test-strstr.c: Provide dummy definition of
libc_hidden_builtin_def when including strstr.c.
* sysdeps/ia64/fpu/libm-symbols.h: Suppress entire file in _ISOMAC
mode; no need to test __STRICT_ANSI__ nor __cplusplus as well.
* sysdeps/x86_64/fpu/math-tests-arch.h: Include cpu-features.h.
Don't include init-arch.h.
* sysdeps/x86_64/multiarch/test-multiarch.h: Include cpu-features.h.
Don't include init-arch.h.
* elf/Makefile: Move tst-ptrguard1-static, tst-stackguard1-static,
tst-tls1-static, tst-tls2-static, tst-tls3-static, loadtest,
unload, unload2, circleload1, neededtest, neededtest2,
neededtest3, neededtest4, tst-tls1, tst-tls2, tst-tls3,
tst-tls6, tst-tls7, tst-tls8, tst-dlmopen2, tst-ptrguard1,
tst-stackguard1, tst-_dl_addr_inside_object, and all of the
ifunc tests to tests-internal.
Don't add $(modules-names) to test-extras.
* inet/Makefile: Move tst-inet6_scopeid_pton to tests-internal.
Add tst-deadline to tests-static-internal.
* malloc/Makefile: Move tst-mallocstate and tst-scratch_buffer to
tests-internal.
* misc/Makefile: Move tst-atomic and tst-atomic-long to tests-internal.
* nptl/Makefile: Move tst-typesizes, tst-rwlock19, tst-sem11,
tst-sem12, tst-sem13, tst-barrier5, tst-signal7, tst-tls3,
tst-tls3-malloc, tst-tls5, tst-stackguard1, tst-sem11-static,
tst-sem12-static, and tst-stackguard1-static to tests-internal.
Link tests-internal with libpthread also.
Don't add $(modules-names) to test-extras.
* nss/Makefile: Move tst-field to tests-internal.
* posix/Makefile: Move bug-regex5, bug-regex20, bug-regex33,
tst-rfc3484, tst-rfc3484-2, and tst-rfc3484-3 to tests-internal.
* stdlib/Makefile: Move tst-strtod1i, tst-strtod3, tst-strtod4,
tst-strtod5i, tst-tls-atexit, and tst-tls-atexit-nodelete to
tests-internal.
* sunrpc/Makefile: Move tst-svc_register to tests-internal.
* sysdeps/powerpc/Makefile: Move test-get_hwcap and
test-get_hwcap-static to tests-internal.
* sysdeps/unix/sysv/linux/Makefile: Move tst-setgetname to
tests-internal.
* sysdeps/x86_64/fpu/Makefile: Add all libmvec test modules to
modules-names-tests.
This patch consolidates the write Linux syscall implementation on
sysdeps/unix/sysv/linux/write.c.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, and powerpc64le-linux-gnu.
* include/unistd.h (write): Add hidden proto.
* io/Makefile (CFLAGS-write.c): New rule.
* nptl/Makefile (CFLAGS-write.c): Likewise.
* sysdeps/unix/sysv/linux/write.c: New file.
This patch consolidates the read Linux syscall implementation on
sysdeps/unix/sysv/linux/read.c. This leads to a different frame
pointer creation on some architectures:
* It fixes BZ#21428 on aarch64, since now the returned address
for the read syscall can be correctly found out by
backtrace_symbols.
* It makes tst-backtrace{5,6} fails on powerpc due an issue on
its custom backtrace implementation. It is fixed on subsequent
patch from this set.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, and powerpc64le-linux-gnu.
[BZ #21428]
* include/unistd.h (read): Add hidden proto.
* io/Makefile (CFLAGS-read.c): New rule.
* nptl/Makefile (CFLAGS-read.c): New rule.
* sysdeps/unix/sysv/linux/read.c: New file.
This patch consolidates the close Linux syscall generation on
sysdeps/unix/sysv/linux/close.c.
Checked on i686-linux-gnu, x86_64-linux-gnu, x86_64-linux-gnux32,
arch64-linux-gnu, arm-linux-gnueabihf, and powerpc64le-linux-gnu.
* nptl/Makefile (CFLAGS-close.c): New flag.
* sysdeps/unix/sysv/linux/close.c: New file.
sys/socket.h includes sys/uio.h to get the definition of the iovec
structure.
POSIX allows sys/socket.h to make all sys/uio.h symbols visible.
However, all of sys/uio.h is XSI-shaded, so for non-XSI POSIX this
results in conformtest failures (for sys/socket.h and other headers
that include it):
Namespace violation: "UIO_MAXIOV"
Namespace violation: "readv"
Namespace violation: "writev"
Now, there is some ambiguity in POSIX about what namespace
reservations apply in this case - see
http://austingroupbugs.net/view.php?id=1127 - but glibc convention
would still avoid declaring readv and writev, for example, for feature
test macros that don't include them (if only headers from the relevant
standard are included), even if such declarations are permitted, so
there is a bug here according to glibc conventions.
This patch moves the struct iovec definition to a new
bits/types/struct_iovec.h header and includes that from sys/socket.h
instead of including the whole of sys/uio.h. This fixes the namespace
issue; however, three files in glibc that were relying on the implicit
inclusion needed to be updated to include sys/uio.h explicitly. So
there is a question of whether sys/socket.h should continue to include
sys/uio.h under some conditions, such as __USE_XOPEN or __USE_MISC or
__USE_XOPEN || __USE_MISC, for greater compatibility with code that
(wrongly) expects this optional inclusion to be present there. (I
think the three affected files in glibc should still have explicit
sys/uio.h inclusions added in any case, however.)
Tested for x86_64.
[BZ #21426]
* misc/bits/types/struct_iovec.h: New file.
* misc/Makefile (headers): Add bits/types/struct_iovec.h.
* include/bits/types/struct_iovec.h: New file.
* bits/uio.h (struct iovec): Replace by inclusion of
<bits/types/struct_iovec.h>.
* sysdeps/unix/sysv/linux/bits/uio.h (struct iovec): Likewise.
* socket/sys/socket.h: Include <bits/types/struct_iovec.h> instead
of <sys/uio.h>.
* nptl/tst-cancel4.c: Include <sys/uio.h>
* posix/test-errno.c: Likewise.
* support/resolv_test.c: Likewise.
* conform/Makefile (test-xfail-POSIX2008/arpa/inet.h/conform):
Remove.
(test-xfail-POSIX2008/netdb.h/conform): Likewise.
(test-xfail-POSIX2008/netinet/in.h/conform): Likewise.
(test-xfail-POSIX2008/sys/socket.h/conform): Likewise.
This patch removes CALL_THREAD_FCT macro usage and its defition for
x86. For 32 bits it usage is only for force 16 stack alignment,
however stack is already explicit aligned in clone syscall. For
64 bits and x32 it just a function call and there is no need to
code it with inline assembly.
Checked on i686-linux-gnu, x86_64-linux-gnu, and x86_64-linux-gnu-x32.
* nptl/pthread_create.c (START_THREAD_DEFN): Remove
CALL_THREAD_FCT macro usage.
* sysdeps/i386/nptl/tls.h (CALL_THREAD_FCT): Remove definition.
* sysdeps/x86_64/nptl/tls.h (CALL_THREAD_FCT): Likewise.
* sysdeps/x86_64/32/nptl/tls.h: Remove file.
The new cond var implementation (ed19993b5b0d) removed all the
__ASSUME_{REQUEUE_PI,FUTEX_LOCK_PI} internal usage so there is no
need to keep defining it. This patch removes all USE_REQUEUE_PI
and __ASSUME_REQUEUE_PI. It is as follow up from BZ#18463.
Checked with a build for x86_64-linux-gnu, arm-linux-gnueabhf,
m68-linux-gnu, mips64-linux-gnu, and sparc64-linux-gnu.
* nptl/pthreadP.h (USE_REQUEUE_PI): Remove ununsed macro.
* sysdeps/unix/sysv/linux/arm/kernel-features.h
(__ASSUME_REQUEUE_PI): Likewise.
* sysdeps/unix/sysv/linux/kernel-features.h
(__ASSUME_REQUEUE_PI): Likewise.
* sysdeps/unix/sysv/linux/m68k/kernel-features.h
(__ASSUME_REQUEUE_PI): Likewise.
* sysdeps/unix/sysv/linux/mips/kernel-features.h
(__ASSUME_REQUEUE_PI): Likewise.
* sysdeps/unix/sysv/linux/sparc/kernel-features.h
(__ASSUME_REQUEUE_PI): Likewise.
posix/wordexp-test.c used libc-internal.h for PTR_ALIGN_DOWN; similar
to what was done with libc-diag.h, I have split the definitions of
cast_to_integer, ALIGN_UP, ALIGN_DOWN, PTR_ALIGN_UP, and PTR_ALIGN_DOWN
to a new header, libc-pointer-arith.h.
It then occurred to me that the remaining declarations in libc-internal.h
are mostly to do with early initialization, and probably most of the
files including it, even in the core code, don't need it anymore. Indeed,
only 19 files actually need what remains of libc-internal.h. 23 others
need libc-diag.h instead, and 12 need libc-pointer-arith.h instead.
No file needs more than one of them, and 16 don't need any of them!
So, with this patch, libc-internal.h stops including libc-diag.h as
well as losing the pointer arithmetic macros, and all including files
are adjusted.
* include/libc-pointer-arith.h: New file. Define
cast_to_integer, ALIGN_UP, ALIGN_DOWN, PTR_ALIGN_UP, and
PTR_ALIGN_DOWN here.
* include/libc-internal.h: Definitions of above macros
moved from here. Don't include libc-diag.h anymore either.
* posix/wordexp-test.c: Include stdint.h and libc-pointer-arith.h.
Don't include libc-internal.h.
* debug/pcprofile.c, elf/dl-tunables.c, elf/soinit.c, io/openat.c
* io/openat64.c, misc/ptrace.c, nptl/pthread_clock_gettime.c
* nptl/pthread_clock_settime.c, nptl/pthread_cond_common.c
* string/strcoll_l.c, sysdeps/nacl/brk.c
* sysdeps/unix/clock_settime.c
* sysdeps/unix/sysv/linux/i386/get_clockfreq.c
* sysdeps/unix/sysv/linux/ia64/get_clockfreq.c
* sysdeps/unix/sysv/linux/powerpc/get_clockfreq.c
* sysdeps/unix/sysv/linux/sparc/sparc64/get_clockfreq.c:
Don't include libc-internal.h.
* elf/get-dynamic-info.h, iconv/loop.c
* iconvdata/iso-2022-cn-ext.c, locale/weight.h, locale/weightwc.h
* misc/reboot.c, nis/nis_table.c, nptl_db/thread_dbP.h
* nscd/connections.c, resolv/res_send.c, soft-fp/fmadf4.c
* soft-fp/fmasf4.c, soft-fp/fmatf4.c, stdio-common/vfscanf.c
* sysdeps/ieee754/dbl-64/e_lgamma_r.c
* sysdeps/ieee754/dbl-64/k_rem_pio2.c
* sysdeps/ieee754/flt-32/e_lgammaf_r.c
* sysdeps/ieee754/flt-32/k_rem_pio2f.c
* sysdeps/ieee754/ldbl-128/k_tanl.c
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c
* sysdeps/ieee754/ldbl-96/k_tanl.c, sysdeps/nptl/futex-internal.h:
Include libc-diag.h instead of libc-internal.h.
* elf/dl-load.c, elf/dl-reloc.c, locale/programs/locarchive.c
* nptl/nptl-init.c, string/strcspn.c, string/strspn.c
* malloc/malloc.c, sysdeps/i386/nptl/tls.h
* sysdeps/nacl/dl-map-segments.h, sysdeps/x86_64/atomic-machine.h
* sysdeps/unix/sysv/linux/spawni.c
* sysdeps/x86_64/nptl/tls.h:
Include libc-pointer-arith.h instead of libc-internal.h.
* elf/get-dynamic-info.h, sysdeps/nacl/dl-map-segments.h
* sysdeps/x86_64/atomic-machine.h:
Add multiple include guard.
These are a grab bag of changes where the testsuite was using internal
symbols of some variety, but this was straightforward to fix, and the
fixed code should work with or without the change to compile the
testsuite under _ISOMAC.
Four of these are just more #include adjustments, but I want to highlight
sysdeps/powerpc/fpu/tst-setcontext-fpscr.c, which appears to have been
written before the advent of sys/auxv.h. I think a big chunk of this file
could be replaced by a simple call to getauxval, but I'll let someone who
actually has a powerpc machine to test on do that.
dlfcn/tst-dladdr.c was including ldsodefs.h just so it could use
DL_LOOKUP_ADDRESS to print an additional diagnostic; as requested by Carlos,
I have removed this.
math/test-misc.c was using #ifndef NO_LONG_DOUBLE, which is an internal
configuration macro, to decide whether to do certain tests involving
'long double'. I changed the test to #if LDBL_MANT_DIG > DBL_MANT_DIG
instead, which uses only public float.h macros and is equivalent on
all supported platforms. (Note that NO_LONG_DOUBLE doesn't mean 'the
compiler doesn't support long double', it means 'long double is the
same as double'.)
tst-writev.c has a configuration macro 'ARTIFICIAL_LIMIT' that the
Makefiles are expected to define, and sysdeps/unix/sysv/linux/Makefile
was using the internal __getpagesize in the definition; changed to
sysconf(_SC_PAGESIZE) which is the POSIX equivalent.
ia64-linux doesn't supply 'clone', only '__clone2', which is not
defined in the public headers(!) All the other clone tests have local
extern declarations of __clone2, but tst-clone.c doesn't; it was
getting away with this because include/sched.h does declare __clone2.
* nss/tst-cancel-getpwuid_r.c: Include nss.h.
* string/strcasestr.c: No need to include config.h.
* sysdeps/powerpc/fpu/tst-setcontext-fpscr.c: Include
sys/auxv.h. Don't include sysdep.h.
* sysdeps/powerpc/tst-set_ppr.c: Don't include dl-procinfo.h.
* dlfcn/tst-dladdr.c: Don't include ldsodefs.h. Don't use
DL_LOOKUP_ADDRESS.
* math/test-misc.c: Instead of testing NO_LONG_DOUBLE, test whether
LDBL_MANT_DIG is greater than DBL_MANT_DIG.
* sysdeps/unix/sysv/linux/Makefile (CFLAGS-tst-writev.c): Use
sysconf (_SC_PAGESIZE) instead of __getpagesize in definition
of ARTIFICIAL_LIMIT.
* sysdeps/unix/sysv/linux/tst-clone.c [__ia64__]: Add extern
declaration of __clone2.
Quite a few tests include libc-internal.h just for the DIAG_* macros.
Split those macros to their own file, which can be included safely in
_ISOMAC mode. I also moved ignore_value, since it seems logically
related, even though I didn't notice any tests needing it.
Also add -Wnonnull suppressions to two tests that _should_ have them,
but the error is masked when compiling against internal headers.
* include/libc-diag.h: New file. Define ignore_value,
DIAG_PUSH_NEEDS_COMMENT, DIAG_POP_NEEDS_COMMENT,
DIAG_IGNORE_NEEDS_COMMENT, and DIAG_IGNORE_Os_NEEDS_COMMENT here.
* include/libc-internal.h: Definitions of above macros moved from
here. Include libc-diag.h. Add copyright notice.
* malloc/tst-malloc.c, malloc/tst-memcheck.c, malloc/tst-realloc.c
* misc/tst-error1.c, posix/tst-dir.c, stdio-common/bug21.c
* stdio-common/scanf14.c, stdio-common/scanf4.c, stdio-common/scanf7.c
* stdio-common/test-vfprintf.c, stdio-common/tst-printf.c
* stdio-common/tst-printfsz.c, stdio-common/tst-sprintf.c
* stdio-common/tst-unlockedio.c, stdio-common/tstdiomisc.c
* stdlib/bug-getcontext.c, string/tester.c, string/tst-endian.c
* time/tst-strptime2.c, wcsmbs/tst-wcstof.c:
Include libc-diag.h instead of libc-internal.h.
* stdlib/tst-environ.c: Include libc-diag.h. Suppress -Wnonnull for
call to unsetenv (NULL).
* nptl/tst-mutex1.c: Include libc-diag.h. Suppress -Wnonnull for
call to pthread_mutexattr_destroy (NULL).
* crypt/md5.h: Test _LIBC with #if defined, not #if.
* dirent/opendir-tst1.c: Include sys/stat.h.
* dirent/tst-fdopendir.c: Include sys/stat.h.
* dirent/tst-fdopendir2.c: Include stdlib.h.
* dirent/tst-scandir.c: Include stdbool.h.
* elf/tst-auditmod1.c: Include link.h and stddef.h.
* elf/tst-tls15.c: Include stdlib.h.
* elf/tst-tls16.c: Include stdlib.h.
* elf/tst-tls17.c: Include stdlib.h.
* elf/tst-tls18.c: Include stdlib.h.
* iconv/tst-iconv6.c: Include endian.h.
* iconvdata/bug-iconv11.c: Include limits.h.
* io/test-utime.c: Include stdint.h.
* io/tst-faccessat.c: Include sys/stat.h.
* io/tst-fchmodat.c: Include sys/stat.h.
* io/tst-fchownat.c: Include sys/stat.h.
* io/tst-fstatat.c: Include sys/stat.h.
* io/tst-futimesat.c: Include sys/stat.h.
* io/tst-linkat.c: Include sys/stat.h.
* io/tst-mkdirat.c: Include sys/stat.h and stdbool.h.
* io/tst-mkfifoat.c: Include sys/stat.h and stdbool.h.
* io/tst-mknodat.c: Include sys/stat.h and stdbool.h.
* io/tst-openat.c: Include stdbool.h.
* io/tst-readlinkat.c: Include sys/stat.h.
* io/tst-renameat.c: Include sys/stat.h.
* io/tst-symlinkat.c: Include sys/stat.h.
* io/tst-unlinkat.c: Include stdbool.h.
* libio/bug-memstream1.c: Include stdlib.h.
* libio/bug-wmemstream1.c: Include stdlib.h.
* libio/tst-fwrite-error.c: Include stdlib.h.
* libio/tst-memstream1.c: Include stdlib.h.
* libio/tst-memstream2.c: Include stdlib.h.
* libio/tst-memstream3.c: Include stdlib.h.
* malloc/tst-interpose-aux.c: Include stdint.h.
* misc/tst-preadvwritev-common.c: Include sys/stat.h.
* nptl/tst-basic7.c: Include limits.h.
* nptl/tst-cancel25.c: Include pthread.h, not pthreadP.h.
* nptl/tst-cancel4.c: Include stddef.h, limits.h, and sys/stat.h.
* nptl/tst-cancel4_1.c: Include stddef.h.
* nptl/tst-cancel4_2.c: Include stddef.h.
* nptl/tst-cond16.c: Include limits.h.
Use sysconf(_SC_PAGESIZE) instead of __getpagesize.
* nptl/tst-cond18.c: Include limits.h.
Use sysconf(_SC_PAGESIZE) instead of __getpagesize.
* nptl/tst-cond4.c: Include stdint.h.
* nptl/tst-cond6.c: Include stdint.h.
* nptl/tst-stack2.c: Include limits.h.
* nptl/tst-stackguard1.c: Include stddef.h.
* nptl/tst-tls4.c: Include stdint.h. Don't include tls.h.
* nptl/tst-tls4moda.c: Include stddef.h.
Don't include stdio.h, unistd.h, or tls.h.
* nptl/tst-tls4modb.c: Include stddef.h.
Don't include stdio.h, unistd.h, or tls.h.
* nptl/tst-tls5.h: Include stddef.h. Don't include stdlib.h or tls.h.
* posix/tst-getaddrinfo2.c: Include stdio.h.
* posix/tst-getaddrinfo5.c: Include stdio.h.
* posix/tst-pathconf.c: Include sys/stat.h.
* posix/tst-posix_fadvise-common.c: Include stdint.h.
* posix/tst-preadwrite-common.c: Include sys/stat.h.
* posix/tst-regex.c: Include stdint.h.
Don't include spawn.h or spawn_int.h.
* posix/tst-regexloc.c: Don't include spawn.h or spawn_int.h.
* posix/tst-vfork3.c: Include sys/stat.h.
* resolv/tst-bug18665-tcp.c: Include stdlib.h.
* resolv/tst-res_hconf_reorder.c: Include stdlib.h.
* resolv/tst-resolv-search.c: Include stdlib.h.
* stdio-common/tst-fmemopen2.c: Include stdint.h.
* stdio-common/tst-vfprintf-width-prec.c: Include stdlib.h.
* stdlib/test-canon.c: Include sys/stat.h.
* stdlib/tst-tls-atexit.c: Include stdbool.h.
* string/test-memchr.c: Include stdint.h.
* string/tst-cmp.c: Include stdint.h.
* sysdeps/pthread/tst-timer.c: Include stdint.h.
* sysdeps/unix/sysv/linux/tst-sync_file_range.c: Include stdint.h.
* sysdeps/wordsize-64/tst-writev.c: Include limits.h and stdint.h.
* sysdeps/x86_64/fpu/math-tests-arch.h: Include cpu-features.h.
Don't include init-arch.h.
* sysdeps/x86_64/multiarch/test-multiarch.h: Include cpu-features.h.
Don't include init-arch.h.
* sysdeps/x86_64/tst-auditmod10b.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod3b.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod4b.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod5b.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod6b.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod6c.c: Include link.h and stddef.h.
* sysdeps/x86_64/tst-auditmod7b.c: Include link.h and stddef.h.
* time/clocktest.c: Include stdint.h.
* time/tst-posixtz.c: Include stdint.h.
* timezone/tst-timezone.c: Include stdint.h.
This patch removes the COLORING_INCREMENT define and usage on allocatestack.c.
It has not been used since 564cd8b67ec487f (glibc-2.3.3) by any architecture.
The idea is to simplify the code by removing obsolete code.
* nptl/allocatestack.c [COLORING_INCREMENT] (nptl_ncreated): Remove.
(allocate_stack): Remove COLORING_INCREMENT usage.
* nptl/stack-aliasing.h (COLORING_INCREMENT). Likewise.
* sysdeps/i386/i686/stack-aliasing.h (COLORING_INCREMENT): Likewise.
In _dl_nothread_init_static_tls() and init_one_static_tls() we must not
touch the DTV of other threads since we do not have ownership of them.
The DTV need not be initialized at this point anyway since only LD/GD
accesses will use them. If LD/GD accesses occur they will take care to
initialize their own thread's DTV.
Concurrency comments were removed from the patch since they need to be
reworked along with a full description of DTV ownership and when it is
or is not safe to modify these structures.
Alexandre Oliva's original patch and discussion:
https://sourceware.org/ml/libc-alpha/2016-09/msg00512.html
The commit documents the ownership rules around 'struct pthread' and
when a thread can read or write to the descriptor. With those ownership
rules in place it becomes obvious that pd->stopped_start should not be
touched in several of the paths during thread startup, particularly so
for detached threads. In the case of detached threads, between the time
the thread is created by the OS kernel and the creating thread checks
pd->stopped_start, the detached thread might have already exited and the
memory for pd unmapped. As a regression test we add a simple test which
exercises this exact case by quickly creating detached threads with
large enough stacks to ensure the thread stack cache is bypassed and the
stacks are unmapped. Before the fix the testcase segfaults, after the
fix it works correctly and completes without issue.
For a detailed discussion see:
https://www.sourceware.org/ml/libc-alpha/2017-01/msg00505.html
This fixes the mutex pretty printer so that, if the owner ID isn't recorded
(such as in the current lock elision implementation), "Owner ID" will be shown
as "Unknown" instead of 0. It also changes the mutex printer output so that it
says "Acquired" instead of "Locked". The mutex tests are updated accordingly.
In addition, this adds a paragraph to the "Known issues" section of the
printers README explaining that the printer output isn't guaranteed to cover
every detail.
2017-01-14 Martin Galvan <martingalvan@sourceware.org>
* README.pretty-printers (Known issues): Warn about printers not
always covering everything.
* nptl/nptl-printers.py (MutexPrinter): Change output.
* nptl/test-mutex-printers.py: Fix test and adapt to changed output.
Any changes to the per-thread list of robust mutexes currently acquired as
well as the pending-operations entry are not simply sequential code but
basically concurrent with any actions taken by the kernel when it tries
to clean up after a crash. This is not quite like multi-thread concurrency
but more like signal-handler concurrency.
This patch fixes latent bugs by adding compiler barriers where necessary so
that it is ensured that the kernel crash handling sees consistent data.
This is meant to be easy to backport, so we do not use C11-style signal
fences yet.
* nptl/descr.h (ENQUEUE_MUTEX_BOTH, DEQUEUE_MUTEX): Add compiler
barriers and comments.
* nptl/pthread_mutex_lock.c (__pthread_mutex_lock_full): Likewise.
* nptl/pthread_mutex_timedlock.c (pthread_mutex_timedlock): Likewise.
* nptl/pthread_mutex_unlock.c (__pthread_mutex_unlock_full): Likewise.
lll_robust_unlock on i386 and x86_64 first sets the futex word to
FUTEX_WAITERS|0 before calling __lll_unlock_wake, which will set the
futex word to 0. If the thread is killed between these steps, then the
futex word will be FUTEX_WAITERS|0, and the kernel (at least current
upstream) will not set it to FUTEX_OWNER_DIED|FUTEX_WAITERS because 0 is
not equal to the TID of the crashed thread.
The lll_robust_lock assembly code on i386 and x86_64 is not prepared to
deal with this case because the fastpath tries to only CAS 0 to TID and
not FUTEX_WAITERS|0 to TID; the slowpath simply waits until it can CAS 0
to TID or the futex_word has the FUTEX_OWNER_DIED bit set.
This issue is fixed by removing the custom x86 assembly code and using
the generic C code instead. However, instead of adding more duplicate
code to the custom x86 lowlevellock.h, the code of the lll_robust* functions
is inlined into the single call sites that exist for each of these functions
in the pthread_mutex_* functions. The robust mutex paths in the latter
have been slightly reorganized to make them simpler.
This patch is meant to be easy to backport, so C11-style atomics are not
used.
[BZ #20985]
* nptl/Makefile: Adapt.
* nptl/pthread_mutex_cond_lock.c (LLL_ROBUST_MUTEX_LOCK): Remove.
(LLL_ROBUST_MUTEX_LOCK_MODIFIER): New.
* nptl/pthread_mutex_lock.c (LLL_ROBUST_MUTEX_LOCK): Remove.
(LLL_ROBUST_MUTEX_LOCK_MODIFIER): New.
(__pthread_mutex_lock_full): Inline lll_robust* functions and adapt.
* nptl/pthread_mutex_timedlock.c (pthread_mutex_timedlock): Inline
lll_robust* functions and adapt.
* nptl/pthread_mutex_unlock.c (__pthread_mutex_unlock_full): Likewise.
* sysdeps/nptl/lowlevellock.h (__lll_robust_lock_wait,
__lll_robust_lock, lll_robust_cond_lock, __lll_robust_timedlock_wait,
__lll_robust_timedlock, __lll_robust_unlock): Remove.
* sysdeps/unix/sysv/linux/i386/lowlevellock.h (lll_robust_lock,
lll_robust_cond_lock, lll_robust_timedlock, lll_robust_unlock): Remove.
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.h (lll_robust_lock,
lll_robust_cond_lock, lll_robust_timedlock, lll_robust_unlock): Remove.
* sysdeps/unix/sysv/linux/sparc/lowlevellock.h (__lll_robust_lock_wait,
__lll_robust_lock, lll_robust_cond_lock, __lll_robust_timedlock_wait,
__lll_robust_timedlock, __lll_robust_unlock): Remove.
* nptl/lowlevelrobustlock.c: Remove file.
* nptl/lowlevelrobustlock.sym: Likewise.
* sysdeps/unix/sysv/linux/i386/lowlevelrobustlock.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/lowlevelrobustlock.S: Likewise.
Mixing them up breaks the gdb pretty printer tests.
ChangeLog:
2017-01-02 Martin Galvan <martingalvan@sourceware.org>
* nptl/nptl-printers.py: Fix tabs/spaces mismatches.
This is a new implementation for condition variables, required
after http://austingroupbugs.net/view.php?id=609 to fix bug 13165. In
essence, we need to be stricter in which waiters a signal or broadcast
is required to wake up; this couldn't be solved using the old algorithm.
ISO C++ made a similar clarification, so this also fixes a bug in
current libstdc++, for example.
We can't use the old algorithm anymore because futexes do not guarantee
to wake in FIFO order. Thus, when we wake, we can't simply let any
waiter grab a signal, but we need to ensure that one of the waiters
happening before the signal is woken up. This is something the previous
algorithm violated (see bug 13165).
There's another issue specific to condvars: ABA issues on the underlying
futexes. Unlike mutexes that have just three states, or semaphores that
have no tokens or a limited number of them, the state of a condvar is
the *order* of the waiters. A waiter on a semaphore can grab a token
whenever one is available; a condvar waiter must only consume a signal
if it is eligible to do so as determined by the relative order of the
waiter and the signal.
Therefore, this new algorithm maintains two groups of waiters: Those
eligible to consume signals (G1), and those that have to wait until
previous waiters have consumed signals (G2). Once G1 is empty, G2
becomes the new G1. 64b counters are used to avoid ABA issues.
This condvar doesn't yet use a requeue optimization (ie, on a broadcast,
waking just one thread and requeueing all others on the futex of the
mutex supplied by the program). I don't think doing the requeue is
necessarily the right approach (but I haven't done real measurements
yet):
* If a program expects to wake many threads at the same time and make
that scalable, a condvar isn't great anyway because of how it requires
waiters to operate mutually exclusive (due to the mutex usage). Thus, a
thundering herd problem is a scalability problem with or without the
optimization. Using something like a semaphore might be more
appropriate in such a case.
* The scalability problem is actually at the mutex side; the condvar
could help (and it tries to with the requeue optimization), but it
should be the mutex who decides how that is done, and whether it is done
at all.
* Forcing all but one waiter into the kernel-side wait queue of the
mutex prevents/avoids the use of lock elision on the mutex. Thus, it
prevents the only cure against the underlying scalability problem
inherent to condvars.
* If condvars use short critical sections (ie, hold the mutex just to
check a binary flag or such), which they should do ideally, then forcing
all those waiter to proceed serially with kernel-based hand-off (ie,
futex ops in the mutex' contended state, via the futex wait queues) will
be less efficient than just letting a scalable mutex implementation take
care of it. Our current mutex impl doesn't employ spinning at all, but
if critical sections are short, spinning can be much better.
* Doing the requeue stuff requires all waiters to always drive the mutex
into the contended state. This leads to each waiter having to call
futex_wake after lock release, even if this wouldn't be necessary.
[BZ #13165]
* nptl/pthread_cond_broadcast.c (__pthread_cond_broadcast): Rewrite to
use new algorithm.
* nptl/pthread_cond_destroy.c (__pthread_cond_destroy): Likewise.
* nptl/pthread_cond_init.c (__pthread_cond_init): Likewise.
* nptl/pthread_cond_signal.c (__pthread_cond_signal): Likewise.
* nptl/pthread_cond_wait.c (__pthread_cond_wait): Likewise.
(__pthread_cond_timedwait): Move here from pthread_cond_timedwait.c.
(__condvar_confirm_wakeup, __condvar_cancel_waiting,
__condvar_cleanup_waiting, __condvar_dec_grefs,
__pthread_cond_wait_common): New.
(__condvar_cleanup): Remove.
* npt/pthread_condattr_getclock.c (pthread_condattr_getclock): Adapt.
* npt/pthread_condattr_setclock.c (pthread_condattr_setclock):
Likewise.
* npt/pthread_condattr_getpshared.c (pthread_condattr_getpshared):
Likewise.
* npt/pthread_condattr_init.c (pthread_condattr_init): Likewise.
* nptl/tst-cond1.c: Add comment.
* nptl/tst-cond20.c (do_test): Adapt.
* nptl/tst-cond22.c (do_test): Likewise.
* sysdeps/aarch64/nptl/bits/pthreadtypes.h (pthread_cond_t): Adapt
structure.
* sysdeps/arm/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/ia64/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/m68k/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/microblaze/nptl/bits/pthreadtypes.h (pthread_cond_t):
Likewise.
* sysdeps/mips/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/nios2/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/s390/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/sh/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/tile/nptl/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/pthreadtypes.h (pthread_cond_t):
Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/pthreadtypes.h (pthread_cond_t):
Likewise.
* sysdeps/x86/bits/pthreadtypes.h (pthread_cond_t): Likewise.
* sysdeps/nptl/internaltypes.h (COND_NWAITERS_SHIFT): Remove.
(COND_CLOCK_BITS): Adapt.
* sysdeps/nptl/pthread.h (PTHREAD_COND_INITIALIZER): Adapt.
* nptl/pthreadP.h (__PTHREAD_COND_CLOCK_MONOTONIC_MASK,
__PTHREAD_COND_SHARED_MASK): New.
* nptl/nptl-printers.py (CLOCK_IDS): Remove.
(ConditionVariablePrinter, ConditionVariableAttributesPrinter): Adapt.
* nptl/nptl_lock_constants.pysym: Adapt.
* nptl/test-cond-printers.py: Adapt.
* sysdeps/unix/sysv/linux/hppa/internaltypes.h (cond_compat_clear,
cond_compat_check_and_clear): Adapt.
* sysdeps/unix/sysv/linux/hppa/pthread_cond_timedwait.c: Remove file ...
* sysdeps/unix/sysv/linux/hppa/pthread_cond_wait.c
(__pthread_cond_timedwait): ... and move here.
* nptl/DESIGN-condvar.txt: Remove file.
* nptl/lowlevelcond.sym: Likewise.
* nptl/pthread_cond_timedwait.c: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i486/pthread_cond_wait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i586/pthread_cond_wait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/i386/i686/pthread_cond_wait.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_broadcast.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_signal.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_timedwait.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S: Likewise.
The address of the stack canary is stored in a per-thread variable,
which means that we must ensure that the TLS area is intialized before
calling any -fstack-protector'ed functions. For dynamically linked
applications, we ensure this (in a later patch) by disabling
-fstack-protector for the whole dynamic linker, but for static
applications, the AT_ENTRY address is called directly by the kernel, so
we must deal with the problem differently.
In static appliations, __libc_setup_tls performs the TCB setup and TLS
initialization, so this commit arranges for it to be called early and
unconditionally. The call (and the stack guard initialization) is
before the DL_SYSDEP_OSCHECK hook, which if set will probably call
functions which are stack-protected (it does on Linux and NaCL too). We
also move apply_irel up, so that we can still safely call functions that
require ifuncs while in __libc_setup_tls (though if stack-protection is
enabled we still have to avoid calling functions that are not
stack-protected at this stage).
The value of CPPFLAGS provided by the environment may have optimizations
that interfere with the pretty printer test requirements. To override
such optimizations the pretty printer tests must also specify CPPFLAGS.
The existing pretty printer tests are fixed and the
README.pretty-printers is updated with the new requirement.
Assume that Thread 1 waits to acquire a robust mutex using futexes to
block (and thus sets the FUTEX_WAITERS flag), and is unblocked when this
mutex is released. If Thread 2 concurrently acquires the lock and is
killed, Thread 1 can recover from the died owner but fail to restore the
FUTEX_WAITERS flag. This can lead to a Thread 3 that also blocked using
futexes at the same time as Thread 1 to not get woken up because
FUTEX_WAITERS is not set anymore.
The fix for this is to ensure that we continue to preserve the
FUTEX_WAITERS flag whenever we may have set it or shared it with another
thread. This is the same requirement as in the algorithm for normal
mutexes, only that the robust mutexes need additional handling for died
owners and thus preserving the FUTEX_WAITERS flag cannot be done just in
the futex slowpath code.
[BZ #20973]
* nptl/pthread_mutex_lock.c (__pthread_mutex_lock_full): Fix lost
wake-up in robust mutexes.
* nptl/pthread_mutex_timedlock.c (pthread_mutex_timedlock): Likewise.
The label was lost during the conversion to the new test framework
in commit c23de0aacbeaa7a091609b35764bed931475a16d, and the --command
option is currently unused.
The new test driver in <support/test-driver.c> has feature parity with
the old one. The main difference is that its hooking mechanism is
based on functions and function pointers instead of macros. This
commit also implements a new environment variable, TEST_COREDUMPS,
which disables the code which disables coredumps (that is, it enables
them if the invocation environment has not disabled them).
<test-skeleton.c> defines wrapper functions so that it is possible to
use existing macros with the new-style hook functionality.
This commit changes only a few test cases to the new test driver, to
make sure that it works as expected.
This patch adds pretty printers for the following NPTL types:
- pthread_mutex_t
- pthread_mutexattr_t
- pthread_cond_t
- pthread_condattr_t
- pthread_rwlock_t
- pthread_rwlockattr_t
To load the pretty printers into your gdb session, do the following:
python
import sys
sys.path.insert(0, '/path/to/glibc/build/nptl/pretty-printers')
end
source /path/to/glibc/source/pretty-printers/nptl-printers.py
You can check which printers are registered and enabled by issuing the
'info pretty-printer' gdb command. Printers should trigger automatically when
trying to print a variable of one of the types mentioned above.
The printers are architecture-independent, and were tested on an AMD64 running
Ubuntu 14.04 and an x86 VM running Fedora 24.
In order to work, the printers need to know the values of various flags that
are scattered throughout pthread.h and pthreadP.h as enums and #defines. Since
replicating these constants in the printers file itself would create a
maintenance burden, I wrote a script called gen-py-const.awk that Makerules uses
to extract the constants. This script is pretty much the same as gen-as-const.awk,
except it doesn't cast the constant values to 'long' and is thorougly documented.
The constants need only to be enumerated in a .pysym file, which is then referenced
by a Make variable called gen-py-const-headers.
As for the install directory, I discussed this with Mike Frysinger and Siddhesh
Poyarekar, and we agreed that it can be handled in a separate patch, and shouldn't
block merging of this one.
In addition, I've written a series of test cases for the pretty printers.
Each lock type (mutex, condvar and rwlock) has two test programs, one for itself
and other for its related 'attributes' object. Each test program in turn has a
PExpect-based Python script that drives gdb and compares its output to the
expected printer's. The tests run on the glibc host, which is assumed to have
both gdb and PExpect; if either is absent the tests will fail with code 77
(UNSUPPORTED). For cross-testing you should use cross-test-ssh.sh as test-wrapper.
I've tested the printers on both native builds and a cross build using a Beaglebone
Black running Debian, with the build system's filesystem shared with the board
through NFS.
Finally, I've written a README that explains all this and more.
* INSTALL: Regenerated.
* Makeconfig: Add comments and whitespace to make the control flow
clearer.
(+link-printers-tests, +link-pie-printers-tests, CFLAGS-printers-tests,
installed-rtld-LDFLAGS, built-rtld-LDFLAGS, link-libc-rpath,
link-libc-tests-after-rpath-link, link-libc-printers-tests): New.
(rtld-LDFLAGS, rtld-tests-LDFLAGS, link-libc-tests-rpath-link,
link-libc-tests): Use the new variables as required.
* Makerules ($(py-const)): New rule.
generated: Add $(py-const).
* README.pretty-printers: New file.
* Rules (tests-printers-programs, tests-printers-out, py-env): New.
(others): Depend on $(py-const).
(tests): Depend on $(tests-printers-programs) or $(tests-printers-out),
as required. Pass $(tests-printers) to merge-test-results.sh.
* manual/install.texi: Add requirements for testing the pretty printers.
* nptl/Makefile (gen-py-const-headers, pretty-printers, tests-printers,
CFLAGS-test-mutexattr-printers.c CFLAGS-test-mutex-printers.c,
CFLAGS-test-condattr-printers.c, CFLAGS-test-cond-printers.c,
CFLAGS-test-rwlockattr-printers.c CFLAGS-test-rwlock-printers.c,
tests-printers-libs): Define.
* nptl/nptl-printers.py: New file.
* nptl/nptl_lock_constants.pysym: Likewise.
* nptl/test-cond-printers.c: Likewise.
* nptl/test-cond-printers.py: Likewise.
* nptl/test-condattr-printers.c: Likewise.
* nptl/test-condattr-printers.py: Likewise.
* nptl/test-mutex-printers.c: Likewise.
* nptl/test-mutex-printers.py: Likewise.
* nptl/test-mutexattr-printers.c: Likewise.
* nptl/test-mutexattr-printers.py: Likewise.
* nptl/test-rwlock-printers.c: Likewise.
* nptl/test-rwlock-printers.py: Likewise.
* nptl/test-rwlockattr-printers.c: Likewise.
* nptl/test-rwlockattr-printers.py: Likewise.
* scripts/gen-py-const.awk: Likewise.
* scripts/test_printers_common.py: Likewise.
* scripts/test_printers_exceptions.py: Likewise.
This change moves the main implementation of _dl_catch_error,
_dl_signal_error to libc.so, where TLS variables can be used
directly. This removes a writable function pointer from the
rtld_global variable.
For use during initial relocation, minimal implementations of these
functions are provided in ld.so. These are eventually interposed
by the libc.so implementations. This is implemented by compiling
elf/dl-error-skeleton.c twice, via elf/dl-error.c and
elf/dl-error-minimal.c.
As a side effect of this change, the static version of dl-error.c
no longer includes support for the
_dl_signal_cerror/_dl_receive_error mechanism because it is only
used in ld.so.
This patch remove the PID cache and usage in current GLIBC code. Current
usage is mainly used a performance optimization to avoid the syscall,
however it adds some issues:
- The exposed clone syscall will try to set pid/tid to make the new
thread somewhat compatible with current GLIBC assumptions. This cause
a set of issue with new workloads and usecases (such as BZ#17214 and
[1]) as well for new internal usage of clone to optimize other algorithms
(such as clone plus CLONE_VM for posix_spawn, BZ#19957).
- The caching complexity also added some bugs in the past [2] [3] and
requires more effort of each port to handle such requirements (for
both clone and vfork implementation).
- Caching performance gain in mainly on getpid and some specific
code paths. The getpid performance leverage is questionable [4],
either by the idea of getpid being a hotspot as for the getpid
implementation itself (if it is indeed a justifiable hotspot a
vDSO symbol could let to a much more simpler solution).
Other usage is mainly for non usual code paths, such as pthread
cancellation signal and handling.
For thread creation (on stack allocation) the code simplification in fact
adds some performance gain due the no need of transverse the stack cache
and invalidate each element pid.
Other thread usages will require a direct getpid syscall, such as
cancellation/setxid signal, thread cancellation, thread fail path (at
create_thread), and thread signal (pthread_kill and pthread_sigqueue).
However these are hardly usual hotspots and I think adding a syscall is
justifiable.
It also simplifies both the clone and vfork arch-specific implementation.
And by review each fork implementation there are some discrepancies that
this patch also solves:
- microblaze clone/vfork does not set/reset the pid/tid field
- hppa uses the default vfork implementation that fallback to fork.
Since vfork is deprecated I do not think we should bother with it.
The patch also removes the TID caching in clone. My understanding for
such semantic is try provide some pthread usage after a user program
issue clone directly (as done by thread creation with CLONE_PARENT_SETTID
and pthread tid member). However, as stated before in multiple discussions
threads, GLIBC provides clone syscalls without further supporting all this
semantics.
I ran a full make check on x86_64, x32, i686, armhf, aarch64, and powerpc64le.
For sparc32, sparc64, and mips I ran the basic fork and vfork tests from
posix/ folder (on a qemu system). So it would require further testing
on alpha, hppa, ia64, m68k, nios2, s390, sh, and tile (I excluded microblaze
because it is already implementing the patch semantic regarding clone/vfork).
[1] https://codereview.chromium.org/800183004/
[2] https://sourceware.org/ml/libc-alpha/2006-07/msg00123.html
[3] https://sourceware.org/bugzilla/show_bug.cgi?id=15368
[4] http://yarchive.net/comp/linux/getpid_caching.html
* sysdeps/nptl/fork.c (__libc_fork): Remove pid cache setting.
* nptl/allocatestack.c (allocate_stack): Likewise.
(__reclaim_stacks): Likewise.
(setxid_signal_thread): Obtain pid through syscall.
* nptl/nptl-init.c (sigcancel_handler): Likewise.
(sighandle_setxid): Likewise.
* nptl/pthread_cancel.c (pthread_cancel): Likewise.
* sysdeps/unix/sysv/linux/pthread_kill.c (__pthread_kill): Likewise.
* sysdeps/unix/sysv/linux/pthread_sigqueue.c (pthread_sigqueue):
Likewise.
* sysdeps/unix/sysv/linux/createthread.c (create_thread): Likewise.
* sysdeps/unix/sysv/linux/getpid.c: Remove file.
* nptl/descr.h (struct pthread): Change comment about pid value.
* nptl/pthread_getattr_np.c (pthread_getattr_np): Remove thread
pid assert.
* sysdeps/unix/sysv/linux/pthread-pids.h (__pthread_initialize_pids):
Do not set pid value.
* nptl_db/td_ta_thr_iter.c (iterate_thread_list): Remove thread
pid cache check.
* nptl_db/td_thr_validate.c (td_thr_validate): Likewise.
* sysdeps/aarch64/nptl/tcb-offsets.sym: Remove pid offset.
* sysdeps/alpha/nptl/tcb-offsets.sym: Likewise.
* sysdeps/arm/nptl/tcb-offsets.sym: Likewise.
* sysdeps/hppa/nptl/tcb-offsets.sym: Likewise.
* sysdeps/i386/nptl/tcb-offsets.sym: Likewise.
* sysdeps/ia64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/m68k/nptl/tcb-offsets.sym: Likewise.
* sysdeps/microblaze/nptl/tcb-offsets.sym: Likewise.
* sysdeps/mips/nptl/tcb-offsets.sym: Likewise.
* sysdeps/nios2/nptl/tcb-offsets.sym: Likewise.
* sysdeps/powerpc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/s390/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sh/nptl/tcb-offsets.sym: Likewise.
* sysdeps/sparc/nptl/tcb-offsets.sym: Likewise.
* sysdeps/tile/nptl/tcb-offsets.sym: Likewise.
* sysdeps/x86_64/nptl/tcb-offsets.sym: Likewise.
* sysdeps/unix/sysv/linux/aarch64/clone.S: Remove pid and tid caching.
* sysdeps/unix/sysv/linux/alpha/clone.S: Likewise.
* sysdeps/unix/sysv/linux/arm/clone.S: Likewise.
* sysdeps/unix/sysv/linux/hppa/clone.S: Likewise.
* sysdeps/unix/sysv/linux/i386/clone.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/clone2.S: Likewise.
* sysdeps/unix/sysv/linux/mips/clone.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sh/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/clone.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/tile/clone.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/clone.S: Likewise.
* sysdeps/unix/sysv/linux/aarch64/vfork.S: Remove pid set and reset.
* sysdeps/unix/sysv/linux/alpha/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/arm/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/i386/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/ia64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/clone.S: Likewise.
* sysdeps/unix/sysv/linux/m68k/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/mips/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/nios2/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sh/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tile/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/x86_64/vfork.S: Likewise.
* sysdeps/unix/sysv/linux/tst-clone2.c (f): Remove direct pthread
struct access.
(clone_test): Remove function.
(do_test): Rewrite to take in consideration pid is not cached anymore.
This patch consolidates all Linux lseek/lseek64/llseek implementation
in on on sysdeps/unix/sysv/linux/lseek{64}.c. It also removes the llseek
file and instead consolidate the LFS lseek implementation on lseek64.c
as for other LFS symbols implementations.
The general idea is:
- lseek: ABIs that not define __OFF_T_MATCHES_OFF64_T will preferable
use __NR__llseek if kernel supports it, otherwise they will use __NR_lseek.
ABIs that defines __OFF_T_MATCHES_OFF64_T won't produce any symbol.
- lseek64: ABIs with __OFF_T_MATCHES_OFF64_T will preferable use __NR_lseek
(since it will use 64-bit arguments without low/high splitting) and
__NR__llseek if __NR_lseek is not defined (for some ILP32 ports).
- llseek: files will be removed and symbols will be aliased ot lseek64.
ABI without __OFF_T_MATCHES_OFF64_T and without __NR_llseek (basically MIPS64n32
so far) are covered by building lseek with off_t as expected and lseek64
using __NR_lseek (as expected for off64_t being passed using 64-bit registers).
For this consolidation I mantained the x32 assembly specific implementation
because to correctly fix this it would required both the x32 fix for
{INLINE,INTERNAL}_SYSCALL [1] and a wrapper to correctly subscribe it to
return 64 bits instead of default 32 bits (as for times). It could a future
cleanup.
It is based on my previous {INTERNAL,INLINE}_SYSCALL_CALL macro [2],
although it is mainly for simplification.
Tested on x86_64, i686, aarch64, armhf, and powerpc64le.
* nptl/Makefile (libpthread-routines): Remove ptw-llseek and add
ptw-lseek64.
* sysdeps/unix/sysv/linux/Makefile (sysdeps_routines): Remove llseek.
* sysdeps/unix/sysv/linux/alpha/Makefile (sysdeps_routines):
Likewise.
* sysdeps/unix/sysv/linux/generic/wordsize-32/llseek.c: Remove file.
* sysdeps/unix/sysv/linux/generic/wordsize-32/lseek.c: Remove file.
* sysdeps/unix/sysv/linux/mips/mips64/llseek.c: Likewise.
* sysdeps/unix/sysv/linux/llseek.c: Remove file.
* sysdeps/unix/sysv/linux/lseek.c: New file.
* sysdeps/unix/sysv/linux/lseek64.c: Add default Linux implementation.
* sysdeps/unix/sysv/linux/mips/mips64/syscalls.list: Remove lseek and
__libc_lseek64 from auto-generation.
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/lseek64.S: New file.
[1] https://sourceware.org/ml/libc-alpha/2016-08/msg00443.html
[2] https://sourceware.org/ml/libc-alpha/2016-08/msg00646.html
Replaces calls to write on file descriptor 2 with calls to write_message,
which writes to STDOUT_FILENO (1) and properly deals with the return of
write.
In the test cases, there are writes to stdout which do not check the result
value. This patch replaces such occurrences with calls to write_message,
which properly deals with the unused result.
Tested for powerpc64le.
This patch uses the libc_ifunc macro to create already existing ifunc functions
longjmp_ifunc, siglongjmp_ifunc if HAVE_IFUNC is defined.
The s390 pt-longjmp.c includes the common pt-longjmp.c and uses strong_alias
to create the longjmp, siglongjmp symbols for glibc version 2.19.
ChangeLog:
* nptl/pt-longjmp.c (DEFINE_LONGJMP): Use libc_ifunc macro.
* sysdeps/unix/sysv/linux/s390/pt-longjmp.c (longjmp, siglongjmp):
Use strong_alias to create symbols for glibc verison 2.19.
This patch uses the libc_ifunc macro to create already existing ifunc functions
vfork_ifunc and __vfork_ifunc if HAVE_IFUNC is defined.
ChangeLog:
* nptl/pt-vfork.c (DEFINE_VFORK): Use libc_ifunc macro.
This patch uses the libc_ifunc macro to create already existing ifunc function
system_ifunc if HAVE_IFUNC is defined.
ChangeLog:
* nptl/pt-system.c (system_ifunc): Use libc_ifunc macro.