sysdeps/nptl/configure.ac has code to give errors if certain tests in
the top-level configure failed. However, all those failure conditions
also produce errors in the top-level configure, so the errors in the
NPTL configure are completely redundant; this patch removes them.
(As suggested in
<https://sourceware.org/ml/libc-alpha/2015-10/msg00510.html>, I think
the top-level tests in question can be completely removed as
unnecessary given the version tests. But even without that there is
clearly no point in duplicating code that gives an error if the test
fails.)
Tested for x86_64 (testsuite, and that installed shared libraries are
unchanged by the patch).
* sysdeps/nptl/configure.ac: Do not give errors based on the
results of top-level configure tests.
* sysdeps/nptl/configure: Regenerated.
With TLE enabled, the adapt count variable update incurs
an 8% overhead before entering the critical section of an
elided mutex.
Instead, if it is done right after leaving the critical
section, this serialization can be avoided.
This alters the existing behavior of __lll_trylock_elision
as it will only decrement the adapt_count if it successfully
acquires the lock.
* sysdeps/unix/sysv/linux/powerpc/elision-lock.c
(__lll_lock_elision): Remove adapt_count decrement...
* sysdeps/unix/sysv/linux/powerpc/elision-trylock.c
(__lll_trylock_elision): Likewise.
* sysdeps/unix/sysv/linux/powerpc/elision-unlock.c
(__lll_unlock_elision): ... to here. And utilize
new adapt_count parameter.
* sysdeps/unix/sysv/linux/powerpc/lowlevellock.h
(__lll_unlock_elision): Update to include adapt_count
parameter.
(lll_unlock_elision): Pass pointer to adapt_count
variable.
Adding this parameter will give architectures more freedom in
how they choose to update this variable. This change has no
effect on architectures which choose not to use it.
* nptl/pthread_mutex_unlock.c(lll_unlock_elision):
Add elision adapt_count parameter to list of arguments.
* sysdeps/unix/sysv/linux/powerpc/lowlevellock.h
(lll_unlock_elision): Update with new parameter list
* sysdeps/unix/sysv/linux/s390/lowlevellock.h
(lll_unlock_elision): Likewise
* sysdeps/unix/sysv/linux/x86_64/lowlevellock.h
(lll_unlock_elision): Likewise
Since _dl_catch_error is only used internally in ld.so, it should be
declared in sysdeps/generic/ldsodefs.h, not include/dlfcn.h and it can
be made hidden.
[BZ #19122]
* include/dlfcn.h (_dl_catch_error): Moved to ...
* sysdeps/generic/ldsodefs.h (_dl_catch_error): Add
attribute_hidden.
Since internal _itoa functions are only used internally in ld.so and
libc.so, they can be made hidden.
[BZ #19122]
* sysdeps/generic/_itoa.h (_itoa): Add attribute_hidden.
(_itoa_word): Likewise.
Since _wordcopy_XXX functions are only used internally in ld.so and
libc.so, they can be made hidden.
[BZ #19122]
* sysdeps/generic/memcopy.h (_wordcopy_fwd_aligned): Add
attribute_hidden.
(_wordcopy_fwd_dest_aligned): Likewise.
(_wordcopy_bwd_aligned): Likewise.
(_wordcopy_bwd_dest_aligned): Likewise.
Since x86 _dl_unmap and _dl_make_tlsdesc_dynamic are only used
internally in ld.so, they can be made hidden.
[BZ #19122]
* sysdeps/i386/dl-lookupcfg.h (_dl_unmap): Add attribute_hidden.
* sysdeps/i386/dl-tlsdesc.h (_dl_make_tlsdesc_dynamic):
Likewise.
* sysdeps/x86_64/dl-tlsdesc.h (_dl_make_tlsdesc_dynamic):
Likewise.
* sysdeps/x86_64/dl-lookupcfg.h (_dl_unmap): Likewise.
There is a configure test for assembler support for -mtune=i686. This
option was added in binutils 2.18 so the test is obsolete; this patch
removes it.
Tested for x86 (testsuite, and that installed shared libraries are
unchanged by the patch).
* sysdeps/i386/configure.ac (libc_cv_as_i686): Remove configure
test.
* sysdeps/i386/configure: Regenerated.
* sysdeps/i386/i686/Makefile [$(config-asflags-i686) = yes]: Make
code unconditional.
Only i386 implements epoll_pwait in assembly code withot cancellation
support. All other architectures implement epoll_pwait in epoll_pwait.c
with
int epoll_pwait (int epfd, struct epoll_event *events,
int maxevents, int timeout,
const sigset_t *set)
{
return SYSCALL_CANCEL (epoll_pwait, epfd, events, maxevents,
timeout, set, _NSIG / 8);
}
Although there is no test for epoll_pwait in glibc, since SYSCALL_CANCEL
works on i386 and epoll_pwait.c works for other architectures, it is
safe to assume that epoll_pwait.c with SYSCALL_CANCEL also works on
i386.
[BZ #19137]
* sysdeps/unix/sysv/linux/i386/Makefile (CFLAGS-epoll_pwait.c):
Add -fomit-frame-pointer.
* sysdeps/unix/sysv/linux/i386/epoll_pwait.S: Remove file.
Honoring the LD_POINTER_GUARD environment variable in AT_SECURE mode
has security implications. This commit enables pointer guard
unconditionally, and the environment variable is now ignored.
[BZ #18928]
* sysdeps/generic/ldsodefs.h (struct rtld_global_ro): Remove
_dl_pointer_guard member.
* elf/rtld.c (_rtld_global_ro): Remove _dl_pointer_guard
initializer.
(security_init): Always set up pointer guard.
(process_envvars): Do not process LD_POINTER_GUARD.
The powerpc32 implementation of lround and lroundf can produce
spurious exceptions from adding 0.5 then converting to integer. This
includes "inexact" from the conversion to integer (not allowed for
integer arguments to these functions), and, for larger integer
arguments, "inexact", and "overflow" when rounding upward, from the
addition. In addition, "inexact" is not allowed together with
"invalid" and so inexact addition must be avoided when the integer
will be out of range of 32-bit long, whether or not the argument is an
integer.
This patch fixes these problems. As in the powerpc64 llround
implementation, a check is added for too-large arguments; in the
powerpc64 case that means arguments at least 2^52 in magnitude (so
that 0.5 cannot be added exactly), while in this case it means
arguments for which the result would overflow "long". In those cases
a suitable overflowing value is used for the integer conversion
without adding 0.5, while for smaller arguments it's tested whether
the argument is an integer (by adding and subtracting 2^52 to the
absolute value and comparing with the original absolute value) to
avoid adding 0.5 to integers and generating spurious "inexact".
This code is not used when the power5+ sysdeps directories are used,
as there's a separate power5+ version of these functions..
Tested for powerpc. This gets test-float (for a default powerpc32
hard-float build without any --with-cpu) back to the point where it
should pass once powerpc ulps are regenerated; test-double still needs
another problem with exceptions fixed to get back to that point (and I
haven't looked lately at what default powerpc64 results are like).
[BZ #19134]
* sysdeps/powerpc/powerpc32/fpu/s_lround.S (.LC1): New object.
(.LC2): Likewise.
(.LC3): Likewise.
(__lround): Do not add 0.5 to integer or out-of-range arguments.
_dl_tlsdesc_resolve_hold calls into a C function that clobbers r0,
but it assumes the original argument is still in r0 after the call.
This can cause crash in case of concurrent TLS access when TLSDESC
is in use (-mtls-dialect=gnu2).
Run into this while fixing BZ 18572.
Both r0 and r1 are saved/restored so the stack remains 8 byte aligned.
[BZ #19129]
* sysdeps/arm/dl-tlsdesc.S (_dl_tlsdesc_resolve_hold): Save and restore
r0 and r1.
This patch adds an internal entry for __sched_getaffinity_new so that
__sched_getaffinity_old calls __sched_getaffinity_new without going
through PLT.
[BZ #18822]
* sysdeps/unix/sysv/linux/sched_getaffinity.c
(__sched_getaffinity_new): Add libc_hidden_proto and
libc_hidden_def.
Linker in binutils 2.26 and newer generate GOT references instead
PLT references when -z now is passed to linker. We need to extend
scripts/localplt.awk to allow PLT or GOT references.
[BZ #19007]
* scripts/localplt.awk: Also allow GOT references.
* sysdeps/unix/sysv/linux/i386/localplt.data: Mark
_Unwind_Find_FDE, calloc, memalign, realloc and __libc_memalign
with "+ REL R_386_GLOB_DAT".
* sysdeps/x86_64/localplt.data: Mark calloc, memalign, realloc
and __libc_memalign with "+ RELA R_X86_64_GLOB_DAT".
This patch uses INTERNAL_SYSCALL and INLINE_SYSCALL_ERROR_RETURN_VALUE
to avoid reading and writing errno directly so that we don't need to
call __x86.get_pc_thunk.reg to load PC into reg in case there is an
error.
* sysdeps/unix/sysv/linux/i386/brk.c (__brk): Use
INLINE_SYSCALL_ERROR_RETURN_VALUE.
* sysdeps/unix/sysv/linux/i386/fxstatat.c (__fxstatat):
Likewise.
* sysdeps/unix/sysv/linux/i386/setegid.c (setegid): Likewise.
* sysdeps/unix/sysv/linux/i386/seteuid.c (seteuid): Likewise.
* sysdeps/unix/sysv/linux/i386/fxstat.c (__fxstat): Use
INTERNAL_SYSCALLINTERNAL_SYSCALL and
INLINE_SYSCALL_ERROR_RETURN_VALUE.
* sysdeps/unix/sysv/linux/i386/lockf64.c (lockf64): Likewise.
* sysdeps/unix/sysv/linux/i386/lxstat.c (__lxstat): Likewise.
* sysdeps/unix/sysv/linux/i386/sigaction.c (__libc_sigaction):
Likewise.
* sysdeps/unix/sysv/linux/i386/xstat.c (__xstat): Likewise.
The powerpc32 implementations of llroundf and llround produce spurious
and missing exceptions (some arising from such exceptions from
conversions to long long, some present even when fctidz is used).
This patch fixes those problems in a similar way to the llrint /
llrintf fixes. The spurious exceptions in the fctidz case for large
arguments arise from a converted value that saturated as LLONG_MAX
being converted back to float or double (the conversion back being
inexact, but "inexact" must not be raised together with "invalid"),
and from the subtraction x - xrf also being inexact for sufficiently
large arguments (whether the saturation was to LLONG_MAX or
LLONG_MIN); those are fixed by returning early if the argument is
large enough that no rounding is needed.
This code is not used for --with-cpu=power4 builds (I suspect the code
used in that case may also produce spurious "inexact" exceptions, but
that's something to investigate later).
Tested for powerpc.
[BZ #19125]
* sysdeps/powerpc/powerpc32/fpu/s_llround.c: Include <limits.h>,
<math_private.h> and <stdint.h>.
(__llround): Avoid conversions to and from long long int, and
subtractions, where those might raise spurious exceptions.
* sysdeps/powerpc/powerpc32/fpu/s_llroundf.c: Include
<math_private.h> and <stdint.h>.
(__llroundf): Avoid conversions to and from long long int, and
subtractions, where those might raise spurious exceptions.
When x86-64 assmebler doesn't support AVX512, we should make
_dl_runtime_resolve_avx512/_dl_runtime_profile_avx512 as aliases of
_dl_runtime_resolve_avx/_dl_runtime_profile_avx. Tested on x86-64
using GCC 5.2 with binutils 20151008 and GCC 4.8 with binutils 20130219.
There are no differences in ld.so with binutils 20151008. There are no
unexpected failures with binutils 20130219 and 20151008.
[BZ #19124]
* sysdeps/x86_64/dl-trampoline.S [!HAVE_AVX512_ASM_SUPPORT]
(_dl_runtime_resolve_avx512): Make it a hidden alias of
_dl_runtime_resolve_avx.
(_dl_runtime_profile_avx512): Make it a hidden alias of
_dl_runtime_profile_avx.
sysdeps/powerpc/fpu/ has versions of llround and llroundf that are
actually used only for powerpc32 because
sysdeps/powerpc/powerpc64/fpu/ has its own versions of those
functions. This patch moves them into sysdeps/powerpc/powerpc32/fpu
to reflect where they are actually used (in preparation for fixing
other problems with those functions).
Tested for powerpc that installed stripped shared libraries are
unchanged by this patch.
* sysdeps/powerpc/fpu/s_llround.c: Move to ....
* sysdeps/powerpc/powerpc32/fpu/s_llround.c: ...here.
* sysdeps/powerpc/fpu/s_llroundf.c: Move to ....
* sysdeps/powerpc/powerpc32/fpu/s_llroundf.c: ...here.
The versions of llrint and llrintf for older powerpc32 processors
convert the results of __rint / __rintf to long long int, resulting in
spurious exceptions from such casts in certain cases. This patch
makes glibc work around the problems with the libgcc conversions when
the compiler used to build glibc doesn't use the fctidz instruction
for them.
Tested for powerpc.
[BZ #16422]
* sysdeps/powerpc/powerpc32/fpu/configure.ac (libc_cv_ppc_fctidz):
New configure test.
* sysdeps/powerpc/powerpc32/fpu/configure: Regenerated.
* config.h.in [_LIBC] (HAVE_PPC_FCTIDZ): New macro.
* sysdeps/powerpc/powerpc32/fpu/s_llrint.c: Include <limits.h>,
<math_private.h> and <stdint.h>.
(__llrint): Avoid conversions to long long int where those might
raise spurious exceptions.
* sysdeps/powerpc/powerpc32/fpu/s_llrintf.c: Include
<math_private.h> and <stdint.h>.
(__llrintf): Avoid conversions to long long int where those might
raise spurious exceptions.
Similar to the recent fix for MIPS, ARM is also missing correct
exceptions on overflow from llrint and llround functions because casts
from floating-point types to long long do not result in correct
exceptions on overflow. This patch enables the fix for this for ARM.
Tested for ARM.
[BZ #15470]
* sysdeps/arm/fix-fp-int-convert-overflow.h: New file.
For 32-bit MIPS and some other systems, various of the lrint, llrint,
lround, llround functions can be missing exceptions on overflow
because casts do not (in current GCC) result in the proper
exceptions. In the MIPS case there are two problems here: MIPS I code
generation uses an assembler macro that doesn't raise exceptions,
while the libgcc conversions of floating-point values to long long
also do not raise "invalid" on all overflow cases (and can raise
spurious "inexact").
This patch adds support in the generic code (only the functions for
which this problem has actually been seen) for forcing the "invalid"
exception in the problem cases, and enables that support for the
affected MIPS cases.
Tested for MIPS; also tested for x86_64 and x86 that installed
stripped shared libraries are unchanged by this patch.
[BZ #16399]
* sysdeps/generic/fix-fp-int-convert-overflow.h: New file.
* sysdeps/ieee754/dbl-64/s_llrint.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_llround.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lrint.c: Include
<fix-fp-int-convert-overflow.h>.
(__lrint) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/dbl-64/s_lround.c: Include
<fix-fp-int-convert-overflow.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__llrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_llroundf.c: Include <fenv.h>,
<limits.h> and <fix-fp-int-convert-overflow.h>.
(__llroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lrintf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lrintf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/ieee754/flt-32/s_lroundf.c: Include <fenv.h>, <limits.h>
and <fix-fp-int-convert-overflow.h>.
(__lroundf) [FE_INVALID]: Force FE_INVALID exception as needed if
FIX_DBL_LLONG_CONVERT_OVERFLOW.
* sysdeps/mips/mips32/fpu/fix-fp-int-convert-overflow.h: New file.
The x86_64 versions of lrint/lrintf/ lrintl are aliases for the long
long versions which isn't correct for x32, where exceptions must respect
overflow for 32-bit long. Separate versions of the long functions for
x32 that convert to 32-bit long and raise the right exceptions for that
conversion, while keeping the aliases in the non-x32 case.
Tested on x86_64 and x32. There are no code changes in libm.so on
x86_64.
* sysdeps/x86_64/fpu/s_llrint.S (__lrint): Add alias only if
__ILP32__ isn't defined.
(lrint): Likewise.
* sysdeps/x86_64/fpu/s_llrintf.S (__lrintf): Likewise.
(lrintf): Likewise.
* sysdeps/x86_64/fpu/s_llrintl.S (__lrintl): Likewise.
(lrintl): Likewise.
* sysdeps/x86_64/x32/fpu/s_lrint.S: New file.
* sysdeps/x86_64/x32/fpu/s_lrintf.S: Likewise.
* sysdeps/x86_64/x32/fpu/s_lrintl.S: Likewise.
This patch sets lseek/llseek for 64-bit, MIPS n32, and x86_32 as non-
cancelable. This make it consistant with 32-bit platform.
Tested on i686, x86_64, and x32.
* sysdeps/unix/sysv/linux/mips/mips64/syscalls.list (lseek): Set as
non-cancelable.
* sysdeps/unix/sysv/linux/wordsize-64/syscalls.list (llseek): Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/lseek.S (__libc_lseek64):
Likewise.
GCC added support for -mno-vzeroupper in version 4.6. Thus the
configure tests for this support are obsolete, and this patch removes
them.
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by this patch).
* sysdeps/i386/configure.ac (libc_cv_cc_novzeroupper): Remove
configure test.
* sysdeps/i386/configure: Regenerated.
* sysdeps/x86_64/configure.ac (libc_cv_cc_novzeroupper): Remove
configure test.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/Makefile [$(config-cflags-novzeroupper) = yes]:
Make code unconditional.
The dbl-64 implementation of lrint produces incorrect results for some
arguments with 64-bit long because a 32-bit (unsigned) low part of the
mantissa is shifted left, losing high bits in the process. This patch
fixes this by casting to long int before shifting, as in lround (as
this case only applies for 64-bit long, there are no issues with
sign-extension).
Tested for mips64 (n64).
[BZ #19095]
* sysdeps/ieee754/dbl-64/s_lrint.c (__lrint): Cast low part of
mantissa to long int before shifting left.
The dbl-64, ldbl-96 and ldbl-128 implementations of lrint and llrint
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist. It also obviously cannot arise in
FE_TOWARDZERO mode.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT, while raising FE_INEXACT explicitly in the cases where it
is needed; unlike lround and llround, FE_INEXACT is required, not
optional, for these functions for a within-range inexact result).
The fixes are conditional on FE_INVALID or FE_INEXACT being defined.
If any future architecture supports one but not both of those
exceptions, the code will fail to compile and need fixing to handle
that case (this seemed better than conditioning on both macros being
defined, resulting in code that would compile but quietly miss
exceptions on such a system).
Tested for x86_64, x86 and mips64. Tested the ldbl-96 changes (only
relevant for ia64, it appears) on x86_64 by removing the x86_64
versions of lrintl / llrintl.
[BZ #19094]
* sysdeps/ieee754/dbl-64/s_lrint.c: Include <fenv.h> and
<limits.h>.
(__lrint) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* math/libm-test.inc (lrint_test_data): Add more tests.
(llrint_test_data): Likewise.
The dbl-64, ldbl-96 and ldbl-128 implementations of lround and llround
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT).
Tested for x86_64, x86 and mips64.
[BZ #19088]
* sysdeps/ieee754/dbl-64/s_lround.c: Include <fenv.h> and
<limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Include <fenv.h>
and <limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* math/libm-test.inc (lround_test_data): Add more tests.
(llround_test_data): Likewise.
The ldbl-128 implementations of lrintl and lroundl miss "invalid"
exceptions on systems with 32-bit long for arguments that overflow
long but have exponent below 48. This patch fixes this by rearranging
the sequence of tests in the code so the exponent < 48 case is only
used for exponents that don't overflow long.
Tested for mips64 (n32 and n64).
[BZ #19085]
* sysdeps/ieee754/ldbl-128/s_lrintl.c (__lrintl): Move test for
exponent below 48 inside case for non-overflowing exponent.
* sysdeps/ieee754/ldbl-128/s_lroundl.c (__lroundl): Likewise.
This patch enables use of sysdeps/ieee754/dbl-64/wordsize-64 for
MIPS64 (both n64 and n32), removing a #error in one case now that case
has been tested and found to work.
Tested for mips64 (n64 and n32).
* sysdeps/mips/mips64/Implies: Use ieee754/dbl-64/wordsize-64.
* sysdeps/ieee754/dbl-64/wordsize-64/s_issignaling.c
(__issignaling) [HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Remove #error.
The implementation of lround in dbl-64/wordsize-64 as an alias or
wrapper for llround is always incorrect when long is not 64-bit,
because it misses required exceptions in overflow cases, as shown by
my recently added tests. This patch removes that alias / wrapper in
the non-LP64 case, together with the REGISTER_CAST_INT32_TO_INT64
macro, restoring the previous version of lround for dbl-64/wordsize-64
(newly conditioned on !_LP64).
Tested for x86_64, and for mips64 with use of dbl-64/wordsize-64
enabled.
[BZ #19079]
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Restore previous
file, conditioned on [!_LP64].
* sysdeps/ieee754/dbl-64/wordsize-64/s_llround.c
[!_LP64] (__lround): Do not define as function or alias.
[!_LP64] (lround): Likewise.
[!_LP64] (__lroundl): Likewise.
[!_LP64] (lroundl): Likewise.
* sysdeps/tile/sysdep.h (REGISTER_CAST_INT32_TO_INT64): Remove
macro.
* sysdeps/x86_64/x32/sysdep.h (REGISTER_CAST_INT32_TO_INT64):
Likewise.
GCC added support for -msse4 in version 4.3. Thus the configure tests
for it are obsolete, and this patch removes them.
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by this patch).
* sysdeps/i386/configure.ac (libc_cv_cc_sse4): Remove configure
test.
* sysdeps/i386/configure: Regenerated.
* sysdeps/i386/i686/multiarch/Makefile
[$(config-cflags-sse4) = yes]: Make code unconditional.
* sysdeps/i386/i686/multiarch/strcspn.S [HAVE_SSE4_SUPPORT]:
Likewise.
* sysdeps/i386/i686/multiarch/strspn.S [HAVE_SSE4_SUPPORT]:
Likewise.
* sysdeps/x86_64/configure.ac (libc_cv_cc_sse4): Remove configure
test.
* sysdeps/x86_64/configure: Regenerated.
* sysdeps/x86_64/multiarch/Makefile [$(config-cflags-sse4) = yes]:
Make code unconditional.
* sysdeps/x86_64/multiarch/strcspn.S [HAVE_SSE4_SUPPORT]:
Likewise.
* sysdeps/x86_64/multiarch/strspn.S [HAVE_SSE4_SUPPORT]: Likewise.
* config.h.in (HAVE_SSE4_SUPPORT): Remove #undef.
The ldbl-128ibm expl wrapper checks the argument to determine when to
call __kernel_standard_l, thereby overriding overflowing results from
__ieee754_expl that could otherwise (given appropriately patched
libgcc) be correct for the rounding mode. This patch changes it to
check the result of __ieee754_expl instead, as other versions of this
wrapper do.
Tested for powerpc.
[BZ #19078]
* sysdeps/ieee754/ldbl-128ibm/w_expl.c (o_thres): Remove variable.
(u_thres): Likewise.
(__expl): Determine whether to call __kernel_standard_l based on
value of result, not argument.
The ldbl-128ibm implementation of logl produces a zero with the wrong
sign for logl (1) in FE_DOWNWARD mode. This patch makes it explicitly
return 0.0L in that case, as in e.g. the ldbl-128 implementation.
Tested for powerpc.
[BZ #19077]
* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Return
0.0L for argument 1.0L.
The ldbl-128ibm implementation of log1pl produces an infinity with the
wrong sign for log1pl (-1) in FE_DOWNWARD mode. This patch fixes this
by changing a division (-1.0L / (x - x)) (incorrect in FE_DOWNWARD
mode) to (-1.0L / 0.0L) (correct in all rounding modes).
Tested for powerpc.
[BZ #19076]
* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Divide by
constant 0.0L when computing infinite result.
The ldbl-96 version of lroundl is incorrect for systems with 64-bit
long when the argument's absolute value is just below a power of 2,
2^32 or more, and rounds up to the next integer; in such cases, it
returns 0. The problem is incrementing the high part of the mantissa
loses the high bit of the value (which is not an issue for any other
floating-point format, and is handled specially in lround when the bit
corresponding to 0.5 was in the high part rather than the low part).
This patch fixes this in a similar way to that used in llroundl:
storing the high part in an unsigned long variable before incrementing
it, so problems cannot occur in the case when this code is reachable.
I improved test coverage for both lround and llround by making them
use the same test inputs (appropriately conditioned on the size of
long in the lround case) - complete with the same comments, to make
comparison as easy as possible. (This test coverage improvement was
how I found the lroundl bug.)
Tested for x86_64 and x86.
[BZ #19071]
* sysdeps/ieee754/ldbl-96/s_lroundl.c (__lroundl): Use unsigned
long int variable to store possibly incremented high part of
mantissa.
* math/libm-test.inc (lround_test_data): Add tests used for
llround. Use [LONG_MAX > 0x7fffffff] consistently as condition
for tests requiring 64-bit long. Do not condition tests on
[TEST_FLOAT] unnecessarily.
(llround_test_data): Add tests used for lround. Add another
expectation for the "inexact" exception. Do not condition tests
on [TEST_FLOAT] unnecessarily.
On powerpc32 hard-float, older processors (ones where fcfid is not
available for 32-bit code), GCC generates conversions from integers to
floating point that wrongly convert integer 0 to -0 instead of +0 in
FE_DOWNWARD mode. This in turn results in logb and a few other
functions wrongly returning -0 when they should return +0.
This patch works around this issue in glibc as I proposed in
<https://sourceware.org/ml/libc-alpha/2015-09/msg00728.html>, so that
the affected functions can be correct and the affected tests pass in
the absence of a GCC fix for this longstanding issue (GCC bug 67771 -
if fixed, of course we can put in GCC version conditionals, and
eventually phase out the workarounds). A new macro
FIX_INT_FP_CONVERT_ZERO is added in a new sysdeps header
fix-int-fp-convert-zero.h, and the powerpc32/fpu version of that
header defines the macro based on the results of a configure test for
whether such conversions use the fcfid instruction.
Tested for x86_64 (that installed stripped shared libraries are
unchanged by the patch) and powerpc (that HAVE_PPC_FCFID comes out to
0 as expected and that the relevant tests are fixed). Also tested a
build with GCC configured for -mcpu=power4 and verified that
HAVE_PPC_FCFID comes out to 1 in that case.
There are still some other issues to fix to get test-float and
test-double passing cleanly for older powerpc32 processors (apart from
the need for an ulps regeneration for powerpc). (test-ldouble will be
harder to get passing cleanly, but with a combination of selected
fixes to ldbl-128ibm code that don't involve significant performance
issues, allowing spurious underflow and inexact exceptions for that
format, and lots of XFAILing for the default case of unpatched libgcc,
it should be doable.)
[BZ #887]
[BZ #19049]
[BZ #19050]
* sysdeps/generic/fix-int-fp-convert-zero.h: New file.
* sysdeps/ieee754/dbl-64/e_log10.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log10): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/e_log2.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log2): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/s_erf.c: Include
<fix-int-fp-convert-zero.h>.
(__erfc): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/dbl-64/s_logb.c: Include
<fix-int-fp-convert-zero.h>.
(__logb): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/e_log10f.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log10f): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/e_log2f.c: Include
<fix-int-fp-convert-zero.h>.
(__ieee754_log2f): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/s_erff.c: Include
<fix-int-fp-convert-zero.h>.
(__erfcf): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/flt-32/s_logbf.c: Include
<fix-int-fp-convert-zero.h>.
(__logbf): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/ldbl-128ibm/s_erfl.c: Include
<fix-int-fp-convert-zero.h>.
(__erfcl): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/ieee754/ldbl-128ibm/s_logbl.c: Include
<fix-int-fp-convert-zero.h>.
(__logbl): Adjust signs as needed if FIX_INT_FP_CONVERT_ZERO.
* sysdeps/powerpc/powerpc32/fpu/configure.ac: New file.
* sysdeps/powerpc/powerpc32/fpu/configure: New generated file.
* sysdeps/powerpc/powerpc32/fpu/fix-int-fp-convert-zero.h: New
file.
* config.h.in [_LIBC] (HAVE_PPC_FCFID): New macro.