/* Complex sine hyperbole function for float types. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper , 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include #include #include #include #include CFLOAT M_DECL_FUNC (__csinh) (CFLOAT x) { CFLOAT retval; int negate = signbit (__real__ x); int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); __real__ x = M_FABS (__real__ x); if (__glibc_likely (rcls >= FP_ZERO)) { /* Real part is finite. */ if (__glibc_likely (icls >= FP_ZERO)) { /* Imaginary part is finite. */ const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2)); FLOAT sinix, cosix; if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) { M_SINCOS (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1; } if (negate) cosix = -cosix; if (M_FABS (__real__ x) > t) { FLOAT exp_t = M_EXP (t); FLOAT rx = M_FABS (__real__ x); if (signbit (__real__ x)) cosix = -cosix; rx -= t; sinix *= exp_t / 2; cosix *= exp_t / 2; if (rx > t) { rx -= t; sinix *= exp_t; cosix *= exp_t; } if (rx > t) { /* Overflow (original real part of x > 3t). */ __real__ retval = M_MAX * cosix; __imag__ retval = M_MAX * sinix; } else { FLOAT exp_val = M_EXP (rx); __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } } else { __real__ retval = M_SINH (__real__ x) * cosix; __imag__ retval = M_COSH (__real__ x) * sinix; } math_check_force_underflow_complex (retval); } else { if (rcls == FP_ZERO) { /* Real part is 0.0. */ __real__ retval = M_COPYSIGN (0, negate ? -1 : 1); __imag__ retval = M_NAN; if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } else { __real__ retval = M_NAN; __imag__ retval = M_NAN; feraiseexcept (FE_INVALID); } } } else if (rcls == FP_INFINITE) { /* Real part is infinite. */ if (__glibc_likely (icls > FP_ZERO)) { /* Imaginary part is finite. */ FLOAT sinix, cosix; if (__glibc_likely (M_FABS (__imag__ x) > M_MIN)) { M_SINCOS (__imag__ x, &sinix, &cosix); } else { sinix = __imag__ x; cosix = 1; } __real__ retval = M_COPYSIGN (M_HUGE_VAL, cosix); __imag__ retval = M_COPYSIGN (M_HUGE_VAL, sinix); if (negate) __real__ retval = -__real__ retval; } else if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = negate ? -M_HUGE_VAL : M_HUGE_VAL; __imag__ retval = __imag__ x; } else { __real__ retval = M_HUGE_VAL; __imag__ retval = M_NAN; if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); } } else { __real__ retval = M_NAN; __imag__ retval = __imag__ x == 0 ? __imag__ x : M_NAN; } return retval; } declare_mgen_alias (__csinh, csinh) #if M_LIBM_NEED_COMPAT (csinh) declare_mgen_libm_compat (__csinh, csinh) #endif