913d03c864
According to C99 and C11 Annex F, acosh (1) should be +0 in all rounding modes. However, some implementations in glibc wrongly return -0 in round-downward mode (which is what you get if you end up computing log1p (-0), via 1 - 1 being -0 in round-downward mode). This patch fixes the problem implementations, by correcting the test for an exact 1 value in the ldbl-96 implementation to allow for the explicit high bit of the mantissa, and by inserting fabs instructions in the i386 implementations; tests of acosh are duly converted to ALL_RM_TEST. I believe all the other sysdeps/ieee754 implementations are already OK (I haven't checked the ia64 versions, but if buggy then that will be obvious from the results of test runs after this patch is in). Tested x86_64 and x86 and ulps updated accordingly. [BZ #16927] * sysdeps/i386/fpu/e_acosh.S (__ieee754_acosh): Use fabs on x-1 value. * sysdeps/i386/fpu/e_acoshf.S (__ieee754_acoshf): Likewise. * sysdeps/i386/fpu/e_acoshl.S (__ieee754_acoshl): Likewise. * sysdeps/ieee754/ldbl-96/e_acoshl.c (__ieee754_acoshl): Correct for explicit high bit of mantissa when testing for argument equal to 1. * math/libm-test.inc (acosh_test): Use ALL_RM_TEST. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
108 lines
3.1 KiB
ArmAsm
108 lines
3.1 KiB
ArmAsm
/* ix87 specific implementation of arcsinh.
|
|
Copyright (C) 1996-2014 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <machine/asm.h>
|
|
|
|
.section .rodata.cst8,"aM",@progbits,8
|
|
|
|
.p2align 3
|
|
/* Please note that we use double value for 1.0. This number
|
|
has an exact representation and so we don't get accuracy
|
|
problems. The advantage is that the code is simpler. */
|
|
.type one,@object
|
|
one: .double 1.0
|
|
ASM_SIZE_DIRECTIVE(one)
|
|
/* It is not important that this constant is precise. It is only
|
|
a value which is known to be on the safe side for using the
|
|
fyl2xp1 instruction. */
|
|
.type limit,@object
|
|
limit: .double 0.29
|
|
ASM_SIZE_DIRECTIVE(limit)
|
|
|
|
#ifdef PIC
|
|
#define MO(op) op##@GOTOFF(%edx)
|
|
#else
|
|
#define MO(op) op
|
|
#endif
|
|
|
|
.text
|
|
ENTRY(__ieee754_acoshl)
|
|
movl 12(%esp), %ecx
|
|
andl $0xffff, %ecx
|
|
cmpl $0x3fff, %ecx
|
|
jl 5f // < 1 => invalid
|
|
fldln2 // log(2)
|
|
fldt 4(%esp) // x : log(2)
|
|
cmpl $0x4020, %ecx
|
|
ja 3f // x > 2^34
|
|
#ifdef PIC
|
|
LOAD_PIC_REG (dx)
|
|
#endif
|
|
cmpl $0x4000, %ecx
|
|
ja 4f // x > 2
|
|
|
|
// 1 <= x <= 2 => y = log1p(x-1+sqrt(2*(x-1)+(x-1)^2))
|
|
fsubl MO(one) // x-1 : log(2)
|
|
fabs // acosh(1) is +0 in all rounding modes
|
|
fld %st // x-1 : x-1 : log(2)
|
|
fmul %st(1) // (x-1)^2 : x-1 : log(2)
|
|
fadd %st(1) // x-1+(x-1)^2 : x-1 : log(2)
|
|
fadd %st(1) // 2*(x-1)+(x-1)^2 : x-1 : log(2)
|
|
fsqrt // sqrt(2*(x-1)+(x-1)^2) : x-1 : log(2)
|
|
faddp // x-1+sqrt(2*(x-1)+(x-1)^2) : log(2)
|
|
fcoml MO(limit)
|
|
fnstsw
|
|
sahf
|
|
ja 2f
|
|
fyl2xp1 // log1p(x-1+sqrt(2*(x-1)+(x-1)^2))
|
|
ret
|
|
|
|
2: faddl MO(one) // x+sqrt(2*(x-1)+(x-1)^2) : log(2)
|
|
fyl2x // log(x+sqrt(2*(x-1)+(x-1)^2))
|
|
ret
|
|
|
|
// x > 2^34 => y = log(x) + log(2)
|
|
.align ALIGNARG(4)
|
|
3: fyl2x // log(x)
|
|
fldln2 // log(2) : log(x)
|
|
faddp // log(x)+log(2)
|
|
ret
|
|
|
|
// 2^34 > x > 2 => y = log(2*x - 1/(x+sqrt(x*x-1)))
|
|
.align ALIGNARG(4)
|
|
4: fld %st // x : x : log(2)
|
|
fadd %st, %st(1) // x : 2*x : log(2)
|
|
fld %st // x : x : 2*x : log(2)
|
|
fmul %st(1) // x^2 : x : 2*x : log(2)
|
|
fsubl MO(one) // x^2-1 : x : 2*x : log(2)
|
|
fsqrt // sqrt(x^2-1) : x : 2*x : log(2)
|
|
faddp // x+sqrt(x^2-1) : 2*x : log(2)
|
|
fdivrl MO(one) // 1/(x+sqrt(x^2-1)) : 2*x : log(2)
|
|
fsubrp // 2*x+1/(x+sqrt(x^2)-1) : log(2)
|
|
fyl2x // log(2*x+1/(x+sqrt(x^2-1)))
|
|
ret
|
|
|
|
// x < 1 => NaN
|
|
.align ALIGNARG(4)
|
|
5: fldz
|
|
fdiv %st, %st(0)
|
|
ret
|
|
END(__ieee754_acoshl)
|
|
strong_alias (__ieee754_acoshl, __acoshl_finite)
|