0747f81811
Various C90 and UNIX98 libm functions call feraiseexcept, which is not in those standards. This causes linknamespace test failures - except on x86 / x86_64, where feraiseexcept is inline (for the relevant constant arguments) in bits/fenv.h. This patch fixes this by making those functions call __feraiseexcept instead. All changes are applied to all architectures rather than considering the possibility that some might not be needed in some cases (e.g. x86) as it seems most maintainable to keep architectures consistent. Where __feraiseexcept does not exist, it is added, with feraiseexcept made a weak alias; where it is a strong alias, it is made weak. libm_hidden_def / libm_hidden_proto are used with __feraiseexcept (this might in some cases improve code generation for existing calls to __feraiseexcept in some code on some architectures). Where there are dummy feraiseexcept macros (on architectures without floating-point exceptions support, to avoid compile errors from references to undefined FE_* macros), corresponding dummy __feraiseexcept macros are added. And on x86, to ensure __feraiseexcept calls still get inlined, the inline function in bits/fenv.h is refactored so that most of it can be reused in an inline __feraiseexcept in a separate include/bits/fenv.h. Calls are changed in C90/UNIX98 functions, but generally not in functions missing from those standards. They are also changed in libc_fe* functions (on the basis that those might be used in any libm function), and in feupdateenv (on the same basis - may be used, via default libc_*, in any libm function - of course feupdateenv will need changing to __feupdateenv in a subsequent patch to make that fully namespace-clean). No __feraiseexcept is added corresponding to the feraiseexcept in powerpc bits/fenvinline.h, because that macro definition is conditional on !defined __NO_MATH_INLINES, and glibc libm is built with -D__NO_MATH_INLINES, so changing internal calls to use __feraiseexcept should make no difference. Tested for x86_64 (testsuite; the only change in disassembly of installed shared libraries is a slight code reordering in clog10, of no apparent significance). Also tested for MIPS, where (in the configuration tested) it eliminates math.h linknamespace failures for n32 and n64 (some for o32 remain because of other issues). [BZ #17723] * include/fenv.h (__feraiseexcept): Use libm_hidden_proto. * math/fraiseexcpt.c (__feraiseexcept): Use libm_hidden_def. * sysdeps/aarch64/fpu/fraiseexcpt.c (feraiseexcept): Rename to __feraiseexcept and define as weak alias of __feraiseexcept. Use libm_hidden_weak. * sysdeps/arm/fraiseexcpt.c (feraiseexcept): Likewise. * sysdeps/hppa/fpu/fraiseexcpt.c (feraiseexcept): Likewise. * sysdeps/i386/fpu/fraiseexcpt.c (__feraiseexcept): Use libm_hidden_def. * sysdeps/ia64/fpu/fraiseexcpt.c (feraiseexcept): Rename to __feraiseexcept and define as weak alias of __feraiseexcept. Use libm_hidden_weak. * sysdeps/m68k/coldfire/fpu/fraiseexcpt.c (feraiseexcept): Likewise. * sysdeps/microblaze/math_private.h (__feraiseexcept): New macro. * sysdeps/mips/fpu/fraiseexcpt.c (feraiseexcept): Rename to __feraiseexcept and define as weak alias of __feraiseexcept. Use libm_hidden_weak. * sysdeps/powerpc/fpu/fraiseexcpt.c (__feraiseexcept): Use libm_hidden_def. * sysdeps/powerpc/nofpu/fraiseexcpt.c (__feraiseexcept): Likewise. * sysdeps/powerpc/powerpc32/e500/nofpu/fraiseexcpt.c (__feraiseexcept): Likewise. * sysdeps/s390/fpu/fraiseexcpt.c (feraiseexcept): Rename to __feraiseexcept and define as weak alias of __feraiseexcept. Use libm_hidden_weak. * sysdeps/sh/sh4/fpu/fraiseexcpt.c (feraiseexcept): Likewise. * sysdeps/sparc/fpu/fraiseexcpt.c (__feraiseexcept): Use libm_hidden_def. * sysdeps/tile/math_private.h (__feraiseexcept): New macro. * sysdeps/unix/sysv/linux/alpha/fraiseexcpt.S (__feraiseexcept): Use libm_hidden_def. * sysdeps/x86_64/fpu/fraiseexcpt.c (__feraiseexcept): Use libm_hidden_def. (feraiseexcept): Define as weak not strong alias. Use libm_hidden_weak. * sysdeps/x86/fpu/bits/fenv.h (__feraiseexcept_invalid_divbyzero): New inline function. Factored out of ... (feraiseexcept): ... here. Use __feraiseexcept_invalid_divbyzero. * sysdeps/x86/fpu/include/bits/fenv.h: New file. * math/e_scalb.c (invalid_fn): Call __feraiseexcept instead of feraiseexcept. * math/w_acos.c (__acos): Likewise. * math/w_asin.c (__asin): Likewise. * math/w_ilogb.c (__ilogb): Likewise. * math/w_j0.c (y0): Likewise. * math/w_j1.c (y1): Likewise. * math/w_jn.c (yn): Likewise. * math/w_log.c (__log): Likewise. * math/w_log10.c (__log10): Likewise. * sysdeps/aarch64/fpu/feupdateenv.c (feupdateenv): Likewise. * sysdeps/aarch64/fpu/math_private.h (libc_feupdateenv_test_aarch64): Likewise. * sysdeps/alpha/fpu/feupdateenv.c (__feupdateenv): Likewise. * sysdeps/arm/fenv_private.h (libc_feupdateenv_test_vfp): Likewise. * sysdeps/arm/feupdateenv.c (feupdateenv): Likewise. * sysdeps/ia64/fpu/feupdateenv.c (feupdateenv): Likewise. * sysdeps/m68k/fpu/feupdateenv.c (__feupdateenv): Likewise. * sysdeps/mips/fpu/feupdateenv.c (feupdateenv): Likewise. * sysdeps/powerpc/fpu/e_sqrt.c (__slow_ieee754_sqrt): Likewise. * sysdeps/s390/fpu/feupdateenv.c (feupdateenv): Likewise. * sysdeps/sh/sh4/fpu/feupdateenv.c (feupdateenv): Likewise. * sysdeps/sparc/fpu/feupdateenv.c (__feupdateenv): Likewise.
---------------------------------------------------------- Notes on how to update libm based on Intel's libm releases ---------------------------------------------------------- This source code in this directory is currently based on Intel libm v2.1 as available from: http://www.intel.com/software/products/opensource/libraries/num.htm To ease importing, fix some bugs, and simplify integration into libc, it is also necessary to apply the patch at: ftp://ftp.hpl.hp.com/pub/linux-ia64/intel-libm-041228.diff.gz The expectation is that Intel will integrate most if not all of these changes into future releases of libm, so this patching step can hopefully be omitted in the future. Once the patched libm sources are extracted in a directory $LIBM, they can be imported into the libc source tree at $LIBC with the following step: $ cd $LIBC/src/sysdep/ia64/fpu $ ./import_intel_libm $LIBM This should produce a number of "Importing..." messages, without showing any errors. At this point, you should be able to build glibc in the usual fashion. We assume you do this in directory $OBJ. Once the build has completed, run "make check" to verify that all (math) checks succeed. If these checks succeed, you should also run the following commands to verify that the new libm doesn't pollute the name-space and has proper size-info for the data objects: $ cd $LIBC/src/sysdep/ia64/fpu $ import_check $OBJ/math/ There should be no (unexpected) errors reported by this script. As an optional step, you may also want to confirm that the new libm exports the exact same global symbols as the old one. If you want to see the changes introduced by the "import_intel_libm" script, you can run the commands: $ cd $LIBC/src/sysdep/ia64/fpu $ import_diffs That's it.