Alan Modra 765714cafc PowerPC floating point little-endian [3 of 15]
http://sourceware.org/ml/libc-alpha/2013-08/msg00083.html

Further replacement of ieee854 macros and unions.  These files also
have some optimisations for comparison against 0.0L, infinity and nan.
Since the ABI specifies that the high double of an IBM long double
pair is the value rounded to double, a high double of 0.0 means the
low double must also be 0.0.  The ABI also says that infinity and
nan are encoded in the high double, with the low double unspecified.
This means that tests for 0.0L, +/-Infinity and +/-NaN need only check
the high double.

	* sysdeps/ieee754/ldbl-128ibm/e_atan2l.c (__ieee754_atan2l): Rewrite
	all uses of ieee854 long double macros and unions.  Simplify tests
	for long doubles that are fully specified by the high double.
	* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_ilogbl.c (__ieee754_ilogbl): Likewise.
	Remove dead code too.
	* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
	(__ieee754_ynl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_log10l.c (__ieee754_log10l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
	Remove dead code too.
	* sysdeps/ieee754/ldbl-128ibm/k_tanl.c (__kernel_tanl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_isinf_nsl.c (__isinf_nsl): Likewise.
	Simplify.
	* sysdeps/ieee754/ldbl-128ibm/s_isinfl.c (___isinfl): Likewise.
	Simplify.
	* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_modfl.c (__modfl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl): Likewise.
	Comment on variable precision.
	* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_scalblnl.c (__scalblnl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (__scalbnl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Likewise.
	* sysdeps/powerpc/fpu/libm-test-ulps: Adjust tan_towardzero ulps.
2013-10-04 10:32:36 +09:30

415 lines
11 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Expansions and modifications for 128-bit long double are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* __ieee754_powl(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 113-53 = 60 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
*/
#include <math.h>
#include <math_private.h>
static const long double bp[] = {
1.0L,
1.5L,
};
/* log_2(1.5) */
static const long double dp_h[] = {
0.0,
5.8496250072115607565592654282227158546448E-1L
};
/* Low part of log_2(1.5) */
static const long double dp_l[] = {
0.0,
1.0579781240112554492329533686862998106046E-16L
};
static const long double zero = 0.0L,
one = 1.0L,
two = 2.0L,
two113 = 1.0384593717069655257060992658440192E34L,
huge = 1.0e300L,
tiny = 1.0e-300L;
/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
z = (x-1)/(x+1)
1 <= x <= 1.25
Peak relative error 2.3e-37 */
static const long double LN[] =
{
-3.0779177200290054398792536829702930623200E1L,
6.5135778082209159921251824580292116201640E1L,
-4.6312921812152436921591152809994014413540E1L,
1.2510208195629420304615674658258363295208E1L,
-9.9266909031921425609179910128531667336670E-1L
};
static const long double LD[] =
{
-5.129862866715009066465422805058933131960E1L,
1.452015077564081884387441590064272782044E2L,
-1.524043275549860505277434040464085593165E2L,
7.236063513651544224319663428634139768808E1L,
-1.494198912340228235853027849917095580053E1L
/* 1.0E0 */
};
/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
0 <= x <= 0.5
Peak relative error 5.7e-38 */
static const long double PN[] =
{
5.081801691915377692446852383385968225675E8L,
9.360895299872484512023336636427675327355E6L,
4.213701282274196030811629773097579432957E4L,
5.201006511142748908655720086041570288182E1L,
9.088368420359444263703202925095675982530E-3L,
};
static const long double PD[] =
{
3.049081015149226615468111430031590411682E9L,
1.069833887183886839966085436512368982758E8L,
8.259257717868875207333991924545445705394E5L,
1.872583833284143212651746812884298360922E3L,
/* 1.0E0 */
};
static const long double
/* ln 2 */
lg2 = 6.9314718055994530941723212145817656807550E-1L,
lg2_h = 6.9314718055994528622676398299518041312695E-1L,
lg2_l = 2.3190468138462996154948554638754786504121E-17L,
ovt = 8.0085662595372944372e-0017L,
/* 2/(3*log(2)) */
cp = 9.6179669392597560490661645400126142495110E-1L,
cp_h = 9.6179669392597555432899980587535537779331E-1L,
cp_l = 5.0577616648125906047157785230014751039424E-17L;
long double
__ieee754_powl (long double x, long double y)
{
long double z, ax, z_h, z_l, p_h, p_l;
long double y1, t1, t2, r, s, t, u, v, w;
long double s2, s_h, s_l, t_h, t_l, ay;
int32_t i, j, k, yisint, n;
uint32_t ix, iy;
int32_t hx, hy, hax;
double ohi, xhi, xlo, yhi, ylo;
uint32_t lx, ly, lj;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS (hx, lx, xhi);
ix = hx & 0x7fffffff;
ldbl_unpack (y, &yhi, &ylo);
EXTRACT_WORDS (hy, ly, yhi);
iy = hy & 0x7fffffff;
/* y==zero: x**0 = 1 */
if ((iy | ly) == 0)
return one;
/* 1.0**y = 1; -1.0**+-Inf = 1 */
if (x == one)
return one;
if (x == -1.0L && ((iy - 0x7ff00000) | ly) == 0)
return one;
/* +-NaN return x+y */
if ((ix >= 0x7ff00000 && ((ix - 0x7ff00000) | lx) != 0)
|| (iy >= 0x7ff00000 && ((iy - 0x7ff00000) | ly) != 0))
return x + y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if (hx < 0)
{
uint32_t low_ye;
GET_HIGH_WORD (low_ye, ylo);
if ((low_ye & 0x7fffffff) >= 0x43400000) /* Low part >= 2^53 */
yisint = 2; /* even integer y */
else if (iy >= 0x3ff00000) /* 1.0 */
{
if (__floorl (y) == y)
{
z = 0.5 * y;
if (__floorl (z) == z)
yisint = 2;
else
yisint = 1;
}
}
}
ax = fabsl (x);
/* special value of y */
if (ly == 0)
{
if (iy == 0x7ff00000) /* y is +-inf */
{
if (ax > one)
/* (|x|>1)**+-inf = inf,0 */
return (hy >= 0) ? y : zero;
else
/* (|x|<1)**-,+inf = inf,0 */
return (hy < 0) ? -y : zero;
}
if (ylo == 0.0)
{
if (iy == 0x3ff00000)
{ /* y is +-1 */
if (hy < 0)
return one / x;
else
return x;
}
if (hy == 0x40000000)
return x * x; /* y is 2 */
if (hy == 0x3fe00000)
{ /* y is 0.5 */
if (hx >= 0) /* x >= +0 */
return __ieee754_sqrtl (x);
}
}
}
/* special value of x */
if (lx == 0)
{
if (ix == 0x7ff00000 || ix == 0 || (ix == 0x3ff00000 && xlo == 0.0))
{
z = ax; /*x is +-0,+-inf,+-1 */
if (hy < 0)
z = one / z; /* z = (1/|x|) */
if (hx < 0)
{
if (((ix - 0x3ff00000) | yisint) == 0)
{
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
}
else if (yisint == 1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
/* (x<0)**(non-int) is NaN */
if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
return (x - x) / (x - x);
/* |y| is huge.
2^-16495 = 1/2 of smallest representable value.
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
if (iy > 0x41d654b0)
{
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
if (iy > 0x47d654b0)
{
if (ix <= 0x3fefffff)
return (hy < 0) ? huge * huge : tiny * tiny;
if (ix >= 0x3ff00000)
return (hy > 0) ? huge * huge : tiny * tiny;
}
/* over/underflow if x is not close to one */
if (ix < 0x3fefffff)
return (hy < 0) ? huge * huge : tiny * tiny;
if (ix > 0x3ff00000)
return (hy > 0) ? huge * huge : tiny * tiny;
}
ay = y > 0 ? y : -y;
if (ay < 0x1p-117)
y = y < 0 ? -0x1p-117 : 0x1p-117;
n = 0;
/* take care subnormal number */
if (ix < 0x00100000)
{
ax *= two113;
n -= 113;
ohi = ldbl_high (ax);
GET_HIGH_WORD (ix, ohi);
}
n += ((ix) >> 20) - 0x3ff;
j = ix & 0x000fffff;
/* determine interval */
ix = j | 0x3ff00000; /* normalize ix */
if (j <= 0x39880)
k = 0; /* |x|<sqrt(3/2) */
else if (j < 0xbb670)
k = 1; /* |x|<sqrt(3) */
else
{
k = 0;
n += 1;
ix -= 0x00100000;
}
ohi = ldbl_high (ax);
GET_HIGH_WORD (hax, ohi);
ax = __scalbnl (ax, ((int) ((ix - hax) * 2)) >> 21);
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one / (ax + bp[k]);
s = u * v;
s_h = ldbl_high (s);
/* t_h=ax+bp[k] High */
t_h = ax + bp[k];
t_h = ldbl_high (t_h);
t_l = ax - (t_h - bp[k]);
s_l = v * ((u - s_h * t_h) - s_h * t_l);
/* compute log(ax) */
s2 = s * s;
u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
r = s2 * s2 * u / v;
r += s_l * (s_h + s);
s2 = s_h * s_h;
t_h = 3.0 + s2 + r;
t_h = ldbl_high (t_h);
t_l = r - ((t_h - 3.0) - s2);
/* u+v = s*(1+...) */
u = s_h * t_h;
v = s_l * t_h + t_l * s;
/* 2/(3log2)*(s+...) */
p_h = u + v;
p_h = ldbl_high (p_h);
p_l = v - (p_h - u);
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l * p_h + p_l * cp + dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (long double) n;
t1 = (((z_h + z_l) + dp_h[k]) + t);
t1 = ldbl_high (t1);
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
/* s (sign of result -ve**odd) = -1 else = 1 */
s = one;
if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
s = -one; /* (-ve)**(odd int) */
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = ldbl_high (y);
p_l = (y - y1) * t1 + y * t2;
p_h = y1 * t1;
z = p_l + p_h;
ohi = ldbl_high (z);
EXTRACT_WORDS (j, lj, ohi);
if (j >= 0x40d00000) /* z >= 16384 */
{
/* if z > 16384 */
if (((j - 0x40d00000) | lj) != 0)
return s * huge * huge; /* overflow */
else
{
if (p_l + ovt > z - p_h)
return s * huge * huge; /* overflow */
}
}
else if ((j & 0x7fffffff) >= 0x40d01b90) /* z <= -16495 */
{
/* z < -16495 */
if (((j - 0xc0d01bc0) | lj) != 0)
return s * tiny * tiny; /* underflow */
else
{
if (p_l <= z - p_h)
return s * tiny * tiny; /* underflow */
}
}
/* compute 2**(p_h+p_l) */
i = j & 0x7fffffff;
k = (i >> 20) - 0x3ff;
n = 0;
if (i > 0x3fe00000)
{ /* if |z| > 0.5, set n = [z+0.5] */
n = __floorl (z + 0.5L);
t = n;
p_h -= t;
}
t = p_l + p_h;
t = ldbl_high (t);
u = t * lg2_h;
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
z = u + v;
w = v - (z - u);
/* exp(z) */
t = z * z;
u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
t1 = z - t * u / v;
r = (z * t1) / (t1 - two) - (w + z * w);
z = one - (r - z);
z = __scalbnl (z, n);
return s * z;
}
strong_alias (__ieee754_powl, __powl_finite)