434d3784f1
2002-04-26 Isamu Hasegawa <isamu@yamato.ibm.com> * posix/regcomp.c (re_compile_fastmap_iter): Fix fastmap in case of not _LIBC and RE_ENABLE_I18N. (build_range_exp): Implement for not _LIBC. (build_collating_symbol): Likewise. (parse_bracket_exp): Unify redundant error handlings. Don't erase mbcset for non matching list in multibyte envs. (build_word_op): Add '_' to matching list for \w operator. * posix/regex_internal.c (re_string_construct): Invoke build_upper_buffer in case of not RE_ENABLE_I18N. (re_string_reconstruct): Don't touch cur_state in case of not RE_ENABLE_I18N. * posix/regex_internal.h (attribute_hidden): New macro in case of not _LIBC. (re_charset_t): Define range_starts/ends in case of not _LIBC. * posix/regexec.c (sift_states_iter_mb): Hide in case of not RE_ENABLE_I18N. (transit_state_mb): Likewise. (check_node_accept_bytes): Implement the code evaluating range expression in case of not _LIBC. (find_collation_sequence_value): Hide in case of not _LIBC. 2002-04-26 Jakub Jelinek <jakub@redhat.com> * sysdeps/unix/sysv/linux/sparc/sparc32/semctl.c: Copied from i386/semctl.c. (__old_semctl, __new_semctl): Only use va_arg if the argument will be used.
3309 lines
102 KiB
C
3309 lines
102 KiB
C
/* Extended regular expression matching and search library.
|
||
Copyright (C) 2002 Free Software Foundation, Inc.
|
||
This file is part of the GNU C Library.
|
||
Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, write to the Free
|
||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
||
02111-1307 USA. */
|
||
|
||
#include <assert.h>
|
||
#include <ctype.h>
|
||
#include <limits.h>
|
||
#include <locale.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <wchar.h>
|
||
#include <wctype.h>
|
||
|
||
#ifdef _LIBC
|
||
# ifndef _RE_DEFINE_LOCALE_FUNCTIONS
|
||
# define _RE_DEFINE_LOCALE_FUNCTIONS 1
|
||
# include <locale/localeinfo.h>
|
||
# include <locale/elem-hash.h>
|
||
# include <locale/coll-lookup.h>
|
||
# endif
|
||
#endif
|
||
|
||
/* This is for other GNU distributions with internationalized messages. */
|
||
#if HAVE_LIBINTL_H || defined _LIBC
|
||
# include <libintl.h>
|
||
# ifdef _LIBC
|
||
# undef gettext
|
||
# define gettext(msgid) \
|
||
INTUSE(__dcgettext) (INTUSE(_libc_intl_domainname), msgid, LC_MESSAGES)
|
||
# endif
|
||
#else
|
||
# define gettext(msgid) (msgid)
|
||
#endif
|
||
|
||
#ifndef gettext_noop
|
||
/* This define is so xgettext can find the internationalizable
|
||
strings. */
|
||
# define gettext_noop(String) String
|
||
#endif
|
||
|
||
#include <regex.h>
|
||
#include "regex_internal.h"
|
||
|
||
static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern,
|
||
int length, reg_syntax_t syntax);
|
||
static void re_compile_fastmap_iter (regex_t *bufp,
|
||
const re_dfastate_t *init_state,
|
||
char *fastmap);
|
||
static reg_errcode_t init_dfa (re_dfa_t *dfa, int pat_len);
|
||
static reg_errcode_t init_word_char (re_dfa_t *dfa);
|
||
static void free_charset (re_charset_t *cset);
|
||
static void free_workarea_compile (regex_t *preg);
|
||
static reg_errcode_t create_initial_state (re_dfa_t *dfa);
|
||
static reg_errcode_t analyze (re_dfa_t *dfa);
|
||
static reg_errcode_t analyze_tree (re_dfa_t *dfa, bin_tree_t *node);
|
||
static void calc_first (re_dfa_t *dfa, bin_tree_t *node);
|
||
static void calc_next (re_dfa_t *dfa, bin_tree_t *node);
|
||
static void calc_epsdest (re_dfa_t *dfa, bin_tree_t *node);
|
||
static reg_errcode_t duplicate_node (int *new_idx, re_dfa_t *dfa, int org_idx,
|
||
unsigned int constraint);
|
||
static reg_errcode_t calc_eclosure (re_dfa_t *dfa);
|
||
static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa,
|
||
int node, int root);
|
||
static void calc_inveclosure (re_dfa_t *dfa);
|
||
static int fetch_number (re_string_t *input, re_token_t *token,
|
||
reg_syntax_t syntax);
|
||
static re_token_t fetch_token (re_string_t *input, reg_syntax_t syntax);
|
||
static int peek_token (re_token_t *token, re_string_t *input,
|
||
reg_syntax_t syntax);
|
||
static int peek_token_bracket (re_token_t *token, re_string_t *input,
|
||
reg_syntax_t syntax);
|
||
static bin_tree_t *parse (re_string_t *regexp, regex_t *preg,
|
||
reg_syntax_t syntax, reg_errcode_t *err);
|
||
static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg,
|
||
re_token_t *token, reg_syntax_t syntax,
|
||
int nest, reg_errcode_t *err);
|
||
static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg,
|
||
re_token_t *token, reg_syntax_t syntax,
|
||
int nest, reg_errcode_t *err);
|
||
static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg,
|
||
re_token_t *token, reg_syntax_t syntax,
|
||
int nest, reg_errcode_t *err);
|
||
static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg,
|
||
re_token_t *token, reg_syntax_t syntax,
|
||
int nest, reg_errcode_t *err);
|
||
static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp,
|
||
re_dfa_t *dfa, re_token_t *token,
|
||
reg_syntax_t syntax, reg_errcode_t *err);
|
||
static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa,
|
||
re_token_t *token, reg_syntax_t syntax,
|
||
reg_errcode_t *err);
|
||
static reg_errcode_t parse_bracket_element (bracket_elem_t *elem,
|
||
re_string_t *regexp,
|
||
re_token_t *token, int token_len,
|
||
re_dfa_t *dfa,
|
||
reg_syntax_t syntax);
|
||
static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem,
|
||
re_string_t *regexp,
|
||
re_token_t *token);
|
||
#ifndef _LIBC
|
||
static reg_errcode_t build_range_exp (re_charset_t *mbcset,
|
||
re_bitset_ptr_t sbcset, int *range_alloc,
|
||
bracket_elem_t *start_elem,
|
||
bracket_elem_t *end_elem);
|
||
static reg_errcode_t build_collating_symbol (re_charset_t *mbcset,
|
||
re_bitset_ptr_t sbcset,
|
||
int *coll_sym_alloc,
|
||
unsigned char *name);
|
||
#endif /* not _LIBC */
|
||
static reg_errcode_t build_equiv_class (re_charset_t *mbcset,
|
||
re_bitset_ptr_t sbcset,
|
||
int *equiv_class_alloc,
|
||
const unsigned char *name);
|
||
static reg_errcode_t build_charclass (re_charset_t *mbcset,
|
||
re_bitset_ptr_t sbcset,
|
||
int *char_class_alloc,
|
||
const unsigned char *class_name,
|
||
reg_syntax_t syntax);
|
||
static bin_tree_t *build_word_op (re_dfa_t *dfa, int not, reg_errcode_t *err);
|
||
static void free_bin_tree (bin_tree_t *tree);
|
||
static bin_tree_t *create_tree (bin_tree_t *left, bin_tree_t *right,
|
||
re_token_type_t type, int index);
|
||
static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa);
|
||
|
||
/* This table gives an error message for each of the error codes listed
|
||
in regex.h. Obviously the order here has to be same as there.
|
||
POSIX doesn't require that we do anything for REG_NOERROR,
|
||
but why not be nice? */
|
||
|
||
const char __re_error_msgid[] attribute_hidden =
|
||
{
|
||
#define REG_NOERROR_IDX 0
|
||
gettext_noop ("Success") /* REG_NOERROR */
|
||
"\0"
|
||
#define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
|
||
gettext_noop ("No match") /* REG_NOMATCH */
|
||
"\0"
|
||
#define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
|
||
gettext_noop ("Invalid regular expression") /* REG_BADPAT */
|
||
"\0"
|
||
#define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
|
||
gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
|
||
"\0"
|
||
#define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
|
||
gettext_noop ("Invalid character class name") /* REG_ECTYPE */
|
||
"\0"
|
||
#define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
|
||
gettext_noop ("Trailing backslash") /* REG_EESCAPE */
|
||
"\0"
|
||
#define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
|
||
gettext_noop ("Invalid back reference") /* REG_ESUBREG */
|
||
"\0"
|
||
#define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
|
||
gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
|
||
"\0"
|
||
#define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
|
||
gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
|
||
"\0"
|
||
#define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
|
||
gettext_noop ("Unmatched \\{") /* REG_EBRACE */
|
||
"\0"
|
||
#define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
|
||
gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
|
||
"\0"
|
||
#define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
|
||
gettext_noop ("Invalid range end") /* REG_ERANGE */
|
||
"\0"
|
||
#define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
|
||
gettext_noop ("Memory exhausted") /* REG_ESPACE */
|
||
"\0"
|
||
#define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
|
||
gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
|
||
"\0"
|
||
#define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
|
||
gettext_noop ("Premature end of regular expression") /* REG_EEND */
|
||
"\0"
|
||
#define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
|
||
gettext_noop ("Regular expression too big") /* REG_ESIZE */
|
||
"\0"
|
||
#define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
|
||
gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
|
||
};
|
||
|
||
const size_t __re_error_msgid_idx[] attribute_hidden =
|
||
{
|
||
REG_NOERROR_IDX,
|
||
REG_NOMATCH_IDX,
|
||
REG_BADPAT_IDX,
|
||
REG_ECOLLATE_IDX,
|
||
REG_ECTYPE_IDX,
|
||
REG_EESCAPE_IDX,
|
||
REG_ESUBREG_IDX,
|
||
REG_EBRACK_IDX,
|
||
REG_EPAREN_IDX,
|
||
REG_EBRACE_IDX,
|
||
REG_BADBR_IDX,
|
||
REG_ERANGE_IDX,
|
||
REG_ESPACE_IDX,
|
||
REG_BADRPT_IDX,
|
||
REG_EEND_IDX,
|
||
REG_ESIZE_IDX,
|
||
REG_ERPAREN_IDX
|
||
};
|
||
|
||
/* Entry points for GNU code. */
|
||
|
||
/* re_compile_pattern is the GNU regular expression compiler: it
|
||
compiles PATTERN (of length SIZE) and puts the result in BUFP.
|
||
Returns 0 if the pattern was valid, otherwise an error string.
|
||
|
||
Assumes the `allocated' (and perhaps `buffer') and `translate' fields
|
||
are set in BUFP on entry. */
|
||
|
||
const char *
|
||
re_compile_pattern (pattern, length, bufp)
|
||
const char *pattern;
|
||
size_t length;
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
reg_errcode_t ret;
|
||
|
||
/* GNU code is written to assume at least RE_NREGS registers will be set
|
||
(and at least one extra will be -1). */
|
||
bufp->regs_allocated = REGS_UNALLOCATED;
|
||
|
||
/* And GNU code determines whether or not to get register information
|
||
by passing null for the REGS argument to re_match, etc., not by
|
||
setting no_sub. */
|
||
bufp->no_sub = 0;
|
||
|
||
/* Match anchors at newline. */
|
||
bufp->newline_anchor = 1;
|
||
|
||
ret = re_compile_internal (bufp, (const unsigned char *) pattern, length,
|
||
re_syntax_options);
|
||
|
||
if (!ret)
|
||
return NULL;
|
||
return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
|
||
}
|
||
#ifdef _LIBC
|
||
weak_alias (__re_compile_pattern, re_compile_pattern)
|
||
#endif
|
||
|
||
/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
|
||
also be assigned to arbitrarily: each pattern buffer stores its own
|
||
syntax, so it can be changed between regex compilations. */
|
||
/* This has no initializer because initialized variables in Emacs
|
||
become read-only after dumping. */
|
||
reg_syntax_t re_syntax_options;
|
||
|
||
|
||
/* Specify the precise syntax of regexps for compilation. This provides
|
||
for compatibility for various utilities which historically have
|
||
different, incompatible syntaxes.
|
||
|
||
The argument SYNTAX is a bit mask comprised of the various bits
|
||
defined in regex.h. We return the old syntax. */
|
||
|
||
reg_syntax_t
|
||
re_set_syntax (syntax)
|
||
reg_syntax_t syntax;
|
||
{
|
||
reg_syntax_t ret = re_syntax_options;
|
||
|
||
re_syntax_options = syntax;
|
||
return ret;
|
||
}
|
||
#ifdef _LIBC
|
||
weak_alias (__re_set_syntax, re_set_syntax)
|
||
#endif
|
||
|
||
int
|
||
re_compile_fastmap (bufp)
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
|
||
char *fastmap = bufp->fastmap;
|
||
|
||
memset (fastmap, '\0', sizeof (char) * SBC_MAX);
|
||
re_compile_fastmap_iter (bufp, dfa->init_state, fastmap);
|
||
if (dfa->init_state != dfa->init_state_word)
|
||
re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap);
|
||
if (dfa->init_state != dfa->init_state_nl)
|
||
re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap);
|
||
if (dfa->init_state != dfa->init_state_begbuf)
|
||
re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap);
|
||
bufp->fastmap_accurate = 1;
|
||
return 0;
|
||
}
|
||
#ifdef _LIBC
|
||
weak_alias (__re_compile_fastmap, re_compile_fastmap)
|
||
#endif
|
||
|
||
/* Helper function for re_compile_fastmap.
|
||
Compile fastmap for the initial_state INIT_STATE. */
|
||
|
||
static void
|
||
re_compile_fastmap_iter (bufp, init_state, fastmap)
|
||
regex_t *bufp;
|
||
const re_dfastate_t *init_state;
|
||
char *fastmap;
|
||
{
|
||
re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
|
||
int node_cnt;
|
||
for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt)
|
||
{
|
||
int node = init_state->nodes.elems[node_cnt];
|
||
re_token_type_t type = dfa->nodes[node].type;
|
||
if (type == OP_CONTEXT_NODE)
|
||
{
|
||
node = dfa->nodes[node].opr.ctx_info->entity;
|
||
type = dfa->nodes[node].type;
|
||
}
|
||
|
||
if (type == CHARACTER)
|
||
fastmap[dfa->nodes[node].opr.c] = 1;
|
||
else if (type == SIMPLE_BRACKET)
|
||
{
|
||
int i, j, ch;
|
||
for (i = 0, ch = 0; i < BITSET_UINTS; ++i)
|
||
for (j = 0; j < UINT_BITS; ++j, ++ch)
|
||
if (dfa->nodes[node].opr.sbcset[i] & (1 << j))
|
||
fastmap[ch] = 1;
|
||
}
|
||
else if (type == COMPLEX_BRACKET)
|
||
{
|
||
int i;
|
||
re_charset_t *cset = dfa->nodes[node].opr.mbcset;
|
||
if (cset->non_match || cset->ncoll_syms || cset->nequiv_classes
|
||
|| cset->nranges || cset->nchar_classes)
|
||
{
|
||
#ifdef _LIBC
|
||
if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0)
|
||
{
|
||
/* In this case we want to catch the bytes which are
|
||
the first byte of any collation elements.
|
||
e.g. In da_DK, we want to catch 'a' since "aa"
|
||
is a valid collation element, and don't catch
|
||
'b' since 'b' is the only collation element
|
||
which starts from 'b'. */
|
||
int j, ch;
|
||
const int32_t *table = (const int32_t *)
|
||
_NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
|
||
for (i = 0, ch = 0; i < BITSET_UINTS; ++i)
|
||
for (j = 0; j < UINT_BITS; ++j, ++ch)
|
||
if (table[ch] < 0)
|
||
fastmap[ch] = 1;
|
||
}
|
||
#else
|
||
# ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1)
|
||
for (i = 0; i < SBC_MAX; ++i)
|
||
if (__btowc (i) == WEOF)
|
||
fastmap[i] = 1;
|
||
# endif /* RE_ENABLE_I18N */
|
||
#endif /* not _LIBC */
|
||
}
|
||
for (i = 0; i < cset->nmbchars; ++i)
|
||
{
|
||
unsigned char buf[256];
|
||
wctomb (buf, cset->mbchars[i]);
|
||
fastmap[buf[0]] = 1;
|
||
}
|
||
}
|
||
else if (type == END_OF_RE || type == COMPLEX_BRACKET
|
||
|| type == OP_PERIOD)
|
||
{
|
||
memset (fastmap, '\1', sizeof (char) * SBC_MAX);
|
||
if (type == END_OF_RE)
|
||
bufp->can_be_null = 1;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Entry point for POSIX code. */
|
||
/* regcomp takes a regular expression as a string and compiles it.
|
||
|
||
PREG is a regex_t *. We do not expect any fields to be initialized,
|
||
since POSIX says we shouldn't. Thus, we set
|
||
|
||
`buffer' to the compiled pattern;
|
||
`used' to the length of the compiled pattern;
|
||
`syntax' to RE_SYNTAX_POSIX_EXTENDED if the
|
||
REG_EXTENDED bit in CFLAGS is set; otherwise, to
|
||
RE_SYNTAX_POSIX_BASIC;
|
||
`newline_anchor' to REG_NEWLINE being set in CFLAGS;
|
||
`fastmap' to an allocated space for the fastmap;
|
||
`fastmap_accurate' to zero;
|
||
`re_nsub' to the number of subexpressions in PATTERN.
|
||
|
||
PATTERN is the address of the pattern string.
|
||
|
||
CFLAGS is a series of bits which affect compilation.
|
||
|
||
If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
|
||
use POSIX basic syntax.
|
||
|
||
If REG_NEWLINE is set, then . and [^...] don't match newline.
|
||
Also, regexec will try a match beginning after every newline.
|
||
|
||
If REG_ICASE is set, then we considers upper- and lowercase
|
||
versions of letters to be equivalent when matching.
|
||
|
||
If REG_NOSUB is set, then when PREG is passed to regexec, that
|
||
routine will report only success or failure, and nothing about the
|
||
registers.
|
||
|
||
It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
|
||
the return codes and their meanings.) */
|
||
|
||
int
|
||
regcomp (preg, pattern, cflags)
|
||
regex_t *preg;
|
||
const char *pattern;
|
||
int cflags;
|
||
{
|
||
reg_errcode_t ret;
|
||
reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED
|
||
: RE_SYNTAX_POSIX_BASIC);
|
||
|
||
preg->buffer = NULL;
|
||
preg->allocated = 0;
|
||
preg->used = 0;
|
||
|
||
/* Try to allocate space for the fastmap. */
|
||
preg->fastmap = re_malloc (char, SBC_MAX);
|
||
if (BE (preg->fastmap == NULL, 0))
|
||
return REG_ESPACE;
|
||
|
||
syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0;
|
||
|
||
/* If REG_NEWLINE is set, newlines are treated differently. */
|
||
if (cflags & REG_NEWLINE)
|
||
{ /* REG_NEWLINE implies neither . nor [^...] match newline. */
|
||
syntax &= ~RE_DOT_NEWLINE;
|
||
syntax |= RE_HAT_LISTS_NOT_NEWLINE;
|
||
/* It also changes the matching behavior. */
|
||
preg->newline_anchor = 1;
|
||
}
|
||
else
|
||
preg->newline_anchor = 0;
|
||
preg->no_sub = !!(cflags & REG_NOSUB);
|
||
preg->translate = NULL;
|
||
|
||
ret = re_compile_internal (preg, pattern, strlen (pattern), syntax);
|
||
|
||
/* POSIX doesn't distinguish between an unmatched open-group and an
|
||
unmatched close-group: both are REG_EPAREN. */
|
||
if (ret == REG_ERPAREN)
|
||
ret = REG_EPAREN;
|
||
|
||
/* We have already checked preg->fastmap != NULL. */
|
||
if (BE (ret == REG_NOERROR, 1))
|
||
{
|
||
/* Compute the fastmap now, since regexec cannot modify the pattern
|
||
buffer. */
|
||
if (BE (re_compile_fastmap (preg) == -2, 0))
|
||
{
|
||
/* Some error occurred while computing the fastmap, just forget
|
||
about it. */
|
||
re_free (preg->fastmap);
|
||
preg->fastmap = NULL;
|
||
}
|
||
}
|
||
|
||
return (int) ret;
|
||
}
|
||
#ifdef _LIBC
|
||
weak_alias (__regcomp, regcomp)
|
||
#endif
|
||
|
||
/* Returns a message corresponding to an error code, ERRCODE, returned
|
||
from either regcomp or regexec. We don't use PREG here. */
|
||
|
||
size_t
|
||
regerror (errcode, preg, errbuf, errbuf_size)
|
||
int errcode;
|
||
const regex_t *preg;
|
||
char *errbuf;
|
||
size_t errbuf_size;
|
||
{
|
||
const char *msg;
|
||
size_t msg_size;
|
||
|
||
if (BE (errcode < 0
|
||
|| errcode >= (int) (sizeof (__re_error_msgid_idx)
|
||
/ sizeof (__re_error_msgid_idx[0])), 0))
|
||
/* Only error codes returned by the rest of the code should be passed
|
||
to this routine. If we are given anything else, or if other regex
|
||
code generates an invalid error code, then the program has a bug.
|
||
Dump core so we can fix it. */
|
||
abort ();
|
||
|
||
msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]);
|
||
|
||
msg_size = strlen (msg) + 1; /* Includes the null. */
|
||
|
||
if (BE (errbuf_size != 0, 1))
|
||
{
|
||
if (BE (msg_size > errbuf_size, 0))
|
||
{
|
||
#if defined HAVE_MEMPCPY || defined _LIBC
|
||
*((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
|
||
#else
|
||
memcpy (errbuf, msg, errbuf_size - 1);
|
||
errbuf[errbuf_size - 1] = 0;
|
||
#endif
|
||
}
|
||
else
|
||
memcpy (errbuf, msg, msg_size);
|
||
}
|
||
|
||
return msg_size;
|
||
}
|
||
#ifdef _LIBC
|
||
weak_alias (__regerror, regerror)
|
||
#endif
|
||
|
||
/* Free dynamically allocated space used by PREG. */
|
||
|
||
void
|
||
regfree (preg)
|
||
regex_t *preg;
|
||
{
|
||
int i, j;
|
||
re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
|
||
if (BE (dfa != NULL, 1))
|
||
{
|
||
re_free (dfa->subexps);
|
||
|
||
for (i = 0; i < dfa->nodes_len; ++i)
|
||
{
|
||
re_token_t *node = dfa->nodes + i;
|
||
if (node->type == COMPLEX_BRACKET && node->duplicated == 0)
|
||
free_charset (node->opr.mbcset);
|
||
else if (node->type == SIMPLE_BRACKET && node->duplicated == 0)
|
||
re_free (node->opr.sbcset);
|
||
else if (node->type == OP_CONTEXT_NODE)
|
||
{
|
||
if (dfa->nodes[node->opr.ctx_info->entity].type == OP_BACK_REF)
|
||
{
|
||
if (node->opr.ctx_info->bkref_eclosure != NULL)
|
||
re_node_set_free (node->opr.ctx_info->bkref_eclosure);
|
||
re_free (node->opr.ctx_info->bkref_eclosure);
|
||
}
|
||
re_free (node->opr.ctx_info);
|
||
}
|
||
}
|
||
re_free (dfa->firsts);
|
||
re_free (dfa->nexts);
|
||
for (i = 0; i < dfa->nodes_len; ++i)
|
||
{
|
||
if (dfa->eclosures != NULL)
|
||
re_node_set_free (dfa->eclosures + i);
|
||
if (dfa->inveclosures != NULL)
|
||
re_node_set_free (dfa->inveclosures + i);
|
||
if (dfa->edests != NULL)
|
||
re_node_set_free (dfa->edests + i);
|
||
}
|
||
re_free (dfa->edests);
|
||
re_free (dfa->eclosures);
|
||
re_free (dfa->inveclosures);
|
||
re_free (dfa->nodes);
|
||
|
||
for (i = 0; i <= dfa->state_hash_mask; ++i)
|
||
{
|
||
struct re_state_table_entry *entry = dfa->state_table + i;
|
||
for (j = 0; j < entry->num; ++j)
|
||
{
|
||
re_dfastate_t *state = entry->array[j];
|
||
if (state->entrance_nodes != &state->nodes)
|
||
{
|
||
re_node_set_free (state->entrance_nodes);
|
||
re_free (state->entrance_nodes);
|
||
}
|
||
re_node_set_free (&state->nodes);
|
||
re_free (state->trtable);
|
||
re_free (state->trtable_search);
|
||
re_free (state);
|
||
}
|
||
re_free (entry->array);
|
||
}
|
||
re_free (dfa->state_table);
|
||
|
||
if (dfa->word_char != NULL)
|
||
re_free (dfa->word_char);
|
||
re_free (dfa);
|
||
}
|
||
re_free (preg->fastmap);
|
||
}
|
||
#ifdef _LIBC
|
||
weak_alias (__regfree, regfree)
|
||
#endif
|
||
|
||
/* Entry points compatible with 4.2 BSD regex library. We don't define
|
||
them unless specifically requested. */
|
||
|
||
#if defined _REGEX_RE_COMP || defined _LIBC
|
||
|
||
/* BSD has one and only one pattern buffer. */
|
||
static struct re_pattern_buffer re_comp_buf;
|
||
|
||
char *
|
||
# ifdef _LIBC
|
||
/* Make these definitions weak in libc, so POSIX programs can redefine
|
||
these names if they don't use our functions, and still use
|
||
regcomp/regexec above without link errors. */
|
||
weak_function
|
||
# endif
|
||
re_comp (s)
|
||
const char *s;
|
||
{
|
||
reg_errcode_t ret;
|
||
|
||
if (!s)
|
||
{
|
||
if (!re_comp_buf.buffer)
|
||
return gettext ("No previous regular expression");
|
||
return 0;
|
||
}
|
||
|
||
if (!re_comp_buf.buffer)
|
||
{
|
||
re_comp_buf.fastmap = (char *) malloc (SBC_MAX);
|
||
if (re_comp_buf.fastmap == NULL)
|
||
return (char *) gettext (__re_error_msgid
|
||
+ __re_error_msgid_idx[(int) REG_ESPACE]);
|
||
}
|
||
|
||
/* Since `re_exec' always passes NULL for the `regs' argument, we
|
||
don't need to initialize the pattern buffer fields which affect it. */
|
||
|
||
/* Match anchors at newlines. */
|
||
re_comp_buf.newline_anchor = 1;
|
||
|
||
ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options);
|
||
|
||
if (!ret)
|
||
return NULL;
|
||
|
||
/* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
|
||
return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]);
|
||
}
|
||
#endif /* _REGEX_RE_COMP */
|
||
|
||
/* Internal entry point.
|
||
Compile the regular expression PATTERN, whose length is LENGTH.
|
||
SYNTAX indicate regular expression's syntax. */
|
||
|
||
static reg_errcode_t
|
||
re_compile_internal (preg, pattern, length, syntax)
|
||
regex_t *preg;
|
||
const char * pattern;
|
||
int length;
|
||
reg_syntax_t syntax;
|
||
{
|
||
reg_errcode_t err = REG_NOERROR;
|
||
re_dfa_t *dfa;
|
||
re_string_t regexp;
|
||
|
||
/* Initialize the pattern buffer. */
|
||
preg->fastmap_accurate = 0;
|
||
preg->syntax = syntax;
|
||
preg->not_bol = preg->not_eol = 0;
|
||
preg->used = 0;
|
||
preg->re_nsub = 0;
|
||
|
||
/* Initialize the dfa. */
|
||
dfa = (re_dfa_t *) preg->buffer;
|
||
if (preg->allocated < sizeof (re_dfa_t))
|
||
{
|
||
/* If zero allocated, but buffer is non-null, try to realloc
|
||
enough space. This loses if buffer's address is bogus, but
|
||
that is the user's responsibility. If ->buffer is NULL this
|
||
is a simple allocation. */
|
||
dfa = re_realloc (preg->buffer, re_dfa_t, 1);
|
||
if (dfa == NULL)
|
||
return REG_ESPACE;
|
||
memset (dfa, '\0', sizeof (re_dfa_t));
|
||
preg->allocated = sizeof (re_dfa_t);
|
||
}
|
||
preg->buffer = (unsigned char *) dfa;
|
||
preg->used = sizeof (re_dfa_t);
|
||
|
||
err = init_dfa (dfa, length);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
{
|
||
re_free (dfa);
|
||
preg->buffer = NULL;
|
||
return err;
|
||
}
|
||
|
||
err = re_string_construct (®exp, pattern, length, preg->translate,
|
||
syntax & RE_ICASE);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
{
|
||
re_free (dfa);
|
||
preg->buffer = NULL;
|
||
return err;
|
||
}
|
||
|
||
/* Parse the regular expression, and build a structure tree. */
|
||
preg->re_nsub = 0;
|
||
dfa->str_tree = parse (®exp, preg, syntax, &err);
|
||
if (BE (dfa->str_tree == NULL, 0))
|
||
goto re_compile_internal_free_return;
|
||
|
||
/* Analyze the tree and collect information which is necessary to
|
||
create the dfa. */
|
||
err = analyze (dfa);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
goto re_compile_internal_free_return;
|
||
|
||
/* Then create the initial state of the dfa. */
|
||
err = create_initial_state (dfa);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
goto re_compile_internal_free_return;
|
||
|
||
re_compile_internal_free_return:
|
||
/* Release work areas. */
|
||
free_workarea_compile (preg);
|
||
re_string_destruct (®exp);
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Initialize DFA. We use the length of the regular expression PAT_LEN
|
||
as the initial length of some arrays. */
|
||
|
||
static reg_errcode_t
|
||
init_dfa (dfa, pat_len)
|
||
re_dfa_t *dfa;
|
||
int pat_len;
|
||
{
|
||
int table_size;
|
||
dfa->nodes_alloc = pat_len + 1;
|
||
dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc);
|
||
|
||
dfa->states_alloc = pat_len + 1;
|
||
|
||
/* table_size = 2 ^ ceil(log pat_len) */
|
||
for (table_size = 1; table_size > 0; table_size <<= 1)
|
||
if (table_size > pat_len)
|
||
break;
|
||
|
||
dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size);
|
||
dfa->state_hash_mask = table_size - 1;
|
||
|
||
dfa->subexps_alloc = 1;
|
||
dfa->subexps = re_malloc (re_subexp_t, dfa->subexps_alloc);
|
||
dfa->word_char = NULL;
|
||
|
||
if (BE (dfa->nodes == NULL || dfa->state_table == NULL
|
||
|| dfa->subexps == NULL, 0))
|
||
{
|
||
/* We don't bother to free anything which was allocated. Very
|
||
soon the process will go down anyway. */
|
||
dfa->subexps = NULL;
|
||
dfa->state_table = NULL;
|
||
dfa->nodes = NULL;
|
||
return REG_ESPACE;
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Initialize WORD_CHAR table, which indicate which character is
|
||
"word". In this case "word" means that it is the word construction
|
||
character used by some operators like "\<", "\>", etc. */
|
||
|
||
static reg_errcode_t
|
||
init_word_char (dfa)
|
||
re_dfa_t *dfa;
|
||
{
|
||
int i, j, ch;
|
||
dfa->word_char = (re_bitset_ptr_t) calloc (sizeof (bitset), 1);
|
||
if (BE (dfa->word_char == NULL, 0))
|
||
return REG_ESPACE;
|
||
for (i = 0, ch = 0; i < BITSET_UINTS; ++i)
|
||
for (j = 0; j < UINT_BITS; ++j, ++ch)
|
||
if (isalnum (ch) || ch == '_')
|
||
dfa->word_char[i] |= 1 << j;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Free the work area which are only used while compiling. */
|
||
|
||
static void
|
||
free_workarea_compile (preg)
|
||
regex_t *preg;
|
||
{
|
||
re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
|
||
free_bin_tree (dfa->str_tree);
|
||
dfa->str_tree = NULL;
|
||
}
|
||
|
||
/* Create initial states for all contexts. */
|
||
|
||
static reg_errcode_t
|
||
create_initial_state (dfa)
|
||
re_dfa_t *dfa;
|
||
{
|
||
int first, i;
|
||
reg_errcode_t err;
|
||
re_node_set init_nodes;
|
||
|
||
/* Initial states have the epsilon closure of the node which is
|
||
the first node of the regular expression. */
|
||
first = dfa->str_tree->first;
|
||
dfa->init_node = first;
|
||
err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
return err;
|
||
|
||
/* The back-references which are in initial states can epsilon transit,
|
||
since in this case all of the subexpressions can be null.
|
||
Then we add epsilon closures of the nodes which are the next nodes of
|
||
the back-references. */
|
||
if (dfa->nbackref > 0)
|
||
for (i = 0; i < init_nodes.nelem; ++i)
|
||
{
|
||
int node_idx = init_nodes.elems[i];
|
||
re_token_type_t type = dfa->nodes[node_idx].type;
|
||
if (type == OP_CONTEXT_NODE
|
||
&& (dfa->nodes[dfa->nodes[node_idx].opr.ctx_info->entity].type
|
||
== OP_BACK_REF))
|
||
{
|
||
int prev_nelem = init_nodes.nelem;
|
||
re_node_set_merge (&init_nodes,
|
||
dfa->nodes[node_idx].opr.ctx_info->bkref_eclosure);
|
||
if (prev_nelem < init_nodes.nelem)
|
||
i = 0;
|
||
}
|
||
else if (type == OP_BACK_REF)
|
||
{
|
||
int next_idx = dfa->nexts[node_idx];
|
||
if (!re_node_set_contains (&init_nodes, next_idx))
|
||
{
|
||
re_node_set_merge (&init_nodes, dfa->eclosures + next_idx);
|
||
i = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* It must be the first time to invoke acquire_state. */
|
||
dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0);
|
||
/* We don't check ERR here, since the initial state must not be NULL. */
|
||
if (BE (dfa->init_state == NULL, 0))
|
||
return err;
|
||
if (dfa->init_state->has_constraint)
|
||
{
|
||
dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes,
|
||
CONTEXT_WORD);
|
||
dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes,
|
||
CONTEXT_NEWLINE);
|
||
dfa->init_state_begbuf = re_acquire_state_context (&err, dfa,
|
||
&init_nodes,
|
||
CONTEXT_NEWLINE
|
||
| CONTEXT_BEGBUF);
|
||
if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL
|
||
|| dfa->init_state_begbuf == NULL, 0))
|
||
return err;
|
||
}
|
||
else
|
||
dfa->init_state_word = dfa->init_state_nl
|
||
= dfa->init_state_begbuf = dfa->init_state;
|
||
|
||
re_node_set_free (&init_nodes);
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Analyze the structure tree, and calculate "first", "next", "edest",
|
||
"eclosure", and "inveclosure". */
|
||
|
||
static reg_errcode_t
|
||
analyze (dfa)
|
||
re_dfa_t *dfa;
|
||
{
|
||
int i;
|
||
reg_errcode_t ret;
|
||
|
||
/* Allocate arrays. */
|
||
dfa->firsts = re_malloc (int, dfa->nodes_alloc);
|
||
dfa->nexts = re_malloc (int, dfa->nodes_alloc);
|
||
dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc);
|
||
dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc);
|
||
dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_alloc);
|
||
if (BE (dfa->firsts == NULL || dfa->nexts == NULL || dfa->edests == NULL
|
||
|| dfa->eclosures == NULL || dfa->inveclosures == NULL, 0))
|
||
return REG_ESPACE;
|
||
/* Initialize them. */
|
||
for (i = 0; i < dfa->nodes_len; ++i)
|
||
{
|
||
dfa->firsts[i] = -1;
|
||
dfa->nexts[i] = -1;
|
||
re_node_set_init_empty (dfa->edests + i);
|
||
re_node_set_init_empty (dfa->eclosures + i);
|
||
re_node_set_init_empty (dfa->inveclosures + i);
|
||
}
|
||
|
||
ret = analyze_tree (dfa, dfa->str_tree);
|
||
if (BE (ret == REG_NOERROR, 1))
|
||
{
|
||
ret = calc_eclosure (dfa);
|
||
if (ret == REG_NOERROR)
|
||
calc_inveclosure (dfa);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Helper functions for analyze.
|
||
This function calculate "first", "next", and "edest" for the subtree
|
||
whose root is NODE. */
|
||
|
||
static reg_errcode_t
|
||
analyze_tree (dfa, node)
|
||
re_dfa_t *dfa;
|
||
bin_tree_t *node;
|
||
{
|
||
reg_errcode_t ret;
|
||
if (node->first == -1)
|
||
calc_first (dfa, node);
|
||
if (node->next == -1)
|
||
calc_next (dfa, node);
|
||
if (node->eclosure.nelem == 0)
|
||
calc_epsdest (dfa, node);
|
||
/* Calculate "first" etc. for the left child. */
|
||
if (node->left != NULL)
|
||
{
|
||
ret = analyze_tree (dfa, node->left);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
return ret;
|
||
}
|
||
/* Calculate "first" etc. for the right child. */
|
||
if (node->right != NULL)
|
||
{
|
||
ret = analyze_tree (dfa, node->right);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
return ret;
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate "first" for the node NODE. */
|
||
static void
|
||
calc_first (dfa, node)
|
||
re_dfa_t *dfa;
|
||
bin_tree_t *node;
|
||
{
|
||
int idx, type;
|
||
idx = node->node_idx;
|
||
type = (node->type == 0) ? dfa->nodes[idx].type : node->type;
|
||
|
||
switch (type)
|
||
{
|
||
#ifdef DEBUG
|
||
case OP_OPEN_SUBEXP:
|
||
case OP_CLOSE_SUBEXP:
|
||
case OP_OPEN_BRACKET:
|
||
case OP_CLOSE_BRACKET:
|
||
case OP_OPEN_DUP_NUM:
|
||
case OP_CLOSE_DUP_NUM:
|
||
case OP_NON_MATCH_LIST:
|
||
case OP_OPEN_COLL_ELEM:
|
||
case OP_CLOSE_COLL_ELEM:
|
||
case OP_OPEN_EQUIV_CLASS:
|
||
case OP_CLOSE_EQUIV_CLASS:
|
||
case OP_OPEN_CHAR_CLASS:
|
||
case OP_CLOSE_CHAR_CLASS:
|
||
/* These must not be appeared here. */
|
||
assert (0);
|
||
#endif
|
||
case END_OF_RE:
|
||
case CHARACTER:
|
||
case OP_PERIOD:
|
||
case OP_DUP_ASTERISK:
|
||
case OP_DUP_QUESTION:
|
||
case COMPLEX_BRACKET:
|
||
case SIMPLE_BRACKET:
|
||
case OP_BACK_REF:
|
||
case ANCHOR:
|
||
node->first = idx;
|
||
break;
|
||
case OP_DUP_PLUS:
|
||
#ifdef DEBUG
|
||
assert (node->left != NULL);
|
||
#endif
|
||
if (node->left->first == -1)
|
||
calc_first (dfa, node->left);
|
||
node->first = node->left->first;
|
||
break;
|
||
case OP_ALT:
|
||
node->first = idx;
|
||
break;
|
||
case SUBEXP:
|
||
if (node->left == NULL)
|
||
{
|
||
if (node->next == -1)
|
||
calc_next (dfa, node);
|
||
node->first = node->next;
|
||
break;
|
||
}
|
||
/* else fall through */
|
||
default:
|
||
#ifdef DEBUG
|
||
assert (node->left != NULL);
|
||
#endif
|
||
if (node->left->first == -1)
|
||
calc_first (dfa, node->left);
|
||
node->first = node->left->first;
|
||
break;
|
||
}
|
||
if (node->type == 0)
|
||
dfa->firsts[idx] = node->first;
|
||
}
|
||
|
||
/* Calculate "next" for the node NODE. */
|
||
|
||
static void
|
||
calc_next (dfa, node)
|
||
re_dfa_t *dfa;
|
||
bin_tree_t *node;
|
||
{
|
||
int idx, type;
|
||
bin_tree_t *parent = node->parent;
|
||
if (parent == NULL)
|
||
{
|
||
node->next = -1;
|
||
idx = node->node_idx;
|
||
if (node->type == 0)
|
||
dfa->nexts[idx] = node->next;
|
||
return;
|
||
}
|
||
|
||
idx = parent->node_idx;
|
||
type = (parent->type == 0) ? dfa->nodes[idx].type : parent->type;
|
||
|
||
switch (type)
|
||
{
|
||
case OP_DUP_ASTERISK:
|
||
case OP_DUP_PLUS:
|
||
node->next = idx;
|
||
break;
|
||
case CONCAT:
|
||
if (parent->left == node)
|
||
{
|
||
if (parent->right->first == -1)
|
||
calc_first (dfa, parent->right);
|
||
node->next = parent->right->first;
|
||
break;
|
||
}
|
||
/* else fall through */
|
||
default:
|
||
if (parent->next == -1)
|
||
calc_next (dfa, parent);
|
||
node->next = parent->next;
|
||
break;
|
||
}
|
||
idx = node->node_idx;
|
||
if (node->type == 0)
|
||
dfa->nexts[idx] = node->next;
|
||
}
|
||
|
||
/* Calculate "edest" for the node NODE. */
|
||
|
||
static void
|
||
calc_epsdest (dfa, node)
|
||
re_dfa_t *dfa;
|
||
bin_tree_t *node;
|
||
{
|
||
int idx;
|
||
idx = node->node_idx;
|
||
if (node->type == 0)
|
||
{
|
||
if (dfa->nodes[idx].type == OP_DUP_ASTERISK
|
||
|| dfa->nodes[idx].type == OP_DUP_PLUS
|
||
|| dfa->nodes[idx].type == OP_DUP_QUESTION)
|
||
{
|
||
if (node->left->first == -1)
|
||
calc_first (dfa, node->left);
|
||
if (node->next == -1)
|
||
calc_next (dfa, node);
|
||
re_node_set_init_2 (dfa->edests + idx, node->left->first,
|
||
node->next);
|
||
}
|
||
else if (dfa->nodes[idx].type == OP_ALT)
|
||
{
|
||
int left, right;
|
||
if (node->left != NULL)
|
||
{
|
||
if (node->left->first == -1)
|
||
calc_first (dfa, node->left);
|
||
left = node->left->first;
|
||
}
|
||
else
|
||
{
|
||
if (node->next == -1)
|
||
calc_next (dfa, node);
|
||
left = node->next;
|
||
}
|
||
if (node->right != NULL)
|
||
{
|
||
if (node->right->first == -1)
|
||
calc_first (dfa, node->right);
|
||
right = node->right->first;
|
||
}
|
||
else
|
||
{
|
||
if (node->next == -1)
|
||
calc_next (dfa, node);
|
||
right = node->next;
|
||
}
|
||
re_node_set_init_2 (dfa->edests + idx, left, right);
|
||
}
|
||
else if (dfa->nodes[idx].type == ANCHOR)
|
||
re_node_set_init_1 (dfa->edests + idx, node->next);
|
||
}
|
||
}
|
||
|
||
/* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT.
|
||
The new index will be stored in NEW_IDX and return REG_NOERROR if succeeded,
|
||
otherwise return the error code. */
|
||
|
||
static reg_errcode_t
|
||
duplicate_node (new_idx, dfa, org_idx, constraint)
|
||
re_dfa_t *dfa;
|
||
int *new_idx, org_idx;
|
||
unsigned int constraint;
|
||
{
|
||
re_token_t dup;
|
||
int dup_idx;
|
||
reg_errcode_t err;
|
||
|
||
dup.type = OP_CONTEXT_NODE;
|
||
if (dfa->nodes[org_idx].type == OP_CONTEXT_NODE)
|
||
{
|
||
/* If the node whose index is ORG_IDX is the same as the intended
|
||
node, use it. */
|
||
if (dfa->nodes[org_idx].constraint == constraint)
|
||
{
|
||
*new_idx = org_idx;
|
||
return REG_NOERROR;
|
||
}
|
||
dup.constraint = constraint |
|
||
dfa->nodes[org_idx].constraint;
|
||
}
|
||
else
|
||
dup.constraint = constraint;
|
||
|
||
/* In case that `entity' points OP_CONTEXT_NODE,
|
||
we correct `entity' to real entity in calc_inveclosures(). */
|
||
dup.opr.ctx_info = malloc (sizeof (*dup.opr.ctx_info));
|
||
dup_idx = re_dfa_add_node (dfa, dup, 1);
|
||
if (BE (dup.opr.ctx_info == NULL || dup_idx == -1, 0))
|
||
return REG_ESPACE;
|
||
dup.opr.ctx_info->entity = org_idx;
|
||
dup.opr.ctx_info->bkref_eclosure = NULL;
|
||
|
||
dfa->nodes[dup_idx].duplicated = 1;
|
||
dfa->firsts[dup_idx] = dfa->firsts[org_idx];
|
||
dfa->nexts[dup_idx] = dfa->nexts[org_idx];
|
||
err = re_node_set_init_copy (dfa->edests + dup_idx, dfa->edests + org_idx);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
return err;
|
||
/* Since we don't duplicate epsilon nodes, epsilon closure have
|
||
only itself. */
|
||
err = re_node_set_init_1 (dfa->eclosures + dup_idx, dup_idx);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
return err;
|
||
err = re_node_set_init_1 (dfa->inveclosures + dup_idx, dup_idx);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
return err;
|
||
/* Then we must update inveclosure for this node.
|
||
We process them at last part of calc_eclosure(),
|
||
since we don't complete to calculate them here. */
|
||
|
||
*new_idx = dup_idx;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static void
|
||
calc_inveclosure (dfa)
|
||
re_dfa_t *dfa;
|
||
{
|
||
int src, idx, dest, entity;
|
||
for (src = 0; src < dfa->nodes_len; ++src)
|
||
{
|
||
for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx)
|
||
{
|
||
dest = dfa->eclosures[src].elems[idx];
|
||
re_node_set_insert (dfa->inveclosures + dest, src);
|
||
}
|
||
|
||
entity = src;
|
||
while (dfa->nodes[entity].type == OP_CONTEXT_NODE)
|
||
{
|
||
entity = dfa->nodes[entity].opr.ctx_info->entity;
|
||
re_node_set_merge (dfa->inveclosures + src,
|
||
dfa->inveclosures + entity);
|
||
dfa->nodes[src].opr.ctx_info->entity = entity;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Calculate "eclosure" for all the node in DFA. */
|
||
|
||
static reg_errcode_t
|
||
calc_eclosure (dfa)
|
||
re_dfa_t *dfa;
|
||
{
|
||
int idx, node_idx, max, incomplete = 0;
|
||
#ifdef DEBUG
|
||
assert (dfa->nodes_len > 0);
|
||
#endif
|
||
/* For each nodes, calculate epsilon closure. */
|
||
for (node_idx = 0, max = dfa->nodes_len; ; ++node_idx)
|
||
{
|
||
reg_errcode_t err;
|
||
re_node_set eclosure_elem;
|
||
if (node_idx == max)
|
||
{
|
||
if (!incomplete)
|
||
break;
|
||
incomplete = 0;
|
||
node_idx = 0;
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
assert (dfa->nodes[node_idx].type != OP_CONTEXT_NODE);
|
||
assert (dfa->eclosures[node_idx].nelem != -1);
|
||
#endif
|
||
/* If we have already calculated, skip it. */
|
||
if (dfa->eclosures[node_idx].nelem != 0)
|
||
continue;
|
||
/* Calculate epsilon closure of `node_idx'. */
|
||
err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
return err;
|
||
|
||
if (dfa->eclosures[node_idx].nelem == 0)
|
||
{
|
||
incomplete = 1;
|
||
re_node_set_free (&eclosure_elem);
|
||
}
|
||
}
|
||
|
||
/* for duplicated nodes. */
|
||
for (idx = max; idx < dfa->nodes_len; ++idx)
|
||
{
|
||
int entity, i, constraint;
|
||
re_node_set *bkref_eclosure;
|
||
entity = dfa->nodes[idx].opr.ctx_info->entity;
|
||
re_node_set_merge (dfa->inveclosures + idx, dfa->inveclosures + entity);
|
||
if (dfa->nodes[entity].type != OP_BACK_REF)
|
||
continue;
|
||
|
||
/* If the node is backreference, duplicate the epsilon closure of
|
||
the next node. Since it may epsilon transit. */
|
||
/* Note: duplicate_node() may realloc dfa->eclosures, etc. */
|
||
bkref_eclosure = re_malloc (re_node_set, 1);
|
||
if (BE (bkref_eclosure == NULL, 0))
|
||
return REG_ESPACE;
|
||
re_node_set_init_empty (bkref_eclosure);
|
||
constraint = dfa->nodes[idx].constraint;
|
||
for (i = 0; i < dfa->eclosures[dfa->nexts[idx]].nelem; ++i)
|
||
{
|
||
int dest_node_idx = dfa->eclosures[dfa->nexts[idx]].elems[i];
|
||
if (!IS_EPSILON_NODE (dfa->nodes[dest_node_idx].type))
|
||
{
|
||
reg_errcode_t err;
|
||
err = duplicate_node (&dest_node_idx, dfa, dest_node_idx,
|
||
constraint);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
return err;
|
||
}
|
||
re_node_set_insert (bkref_eclosure, dest_node_idx);
|
||
}
|
||
dfa->nodes[idx].opr.ctx_info->bkref_eclosure = bkref_eclosure;
|
||
}
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate epsilon closure of NODE. */
|
||
|
||
static reg_errcode_t
|
||
calc_eclosure_iter (new_set, dfa, node, root)
|
||
re_node_set *new_set;
|
||
re_dfa_t *dfa;
|
||
int node, root;
|
||
{
|
||
reg_errcode_t err;
|
||
unsigned int constraint;
|
||
int i, max, incomplete = 0;
|
||
re_node_set eclosure;
|
||
err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
return err;
|
||
|
||
/* This indicates that we are calculating this node now.
|
||
We reference this value to avoid infinite loop. */
|
||
dfa->eclosures[node].nelem = -1;
|
||
|
||
constraint = ((dfa->nodes[node].type == ANCHOR)
|
||
? dfa->nodes[node].opr.ctx_type : 0);
|
||
|
||
/* Expand each epsilon destination nodes. */
|
||
if (dfa->edests[node].nelem != 0)
|
||
for (i = 0; i < dfa->edests[node].nelem; ++i)
|
||
{
|
||
re_node_set eclosure_elem;
|
||
int edest = dfa->edests[node].elems[i];
|
||
/* If calculating the epsilon closure of `edest' is in progress,
|
||
return intermediate result. */
|
||
if (dfa->eclosures[edest].nelem == -1)
|
||
{
|
||
incomplete = 1;
|
||
continue;
|
||
}
|
||
/* If we haven't calculated the epsilon closure of `edest' yet,
|
||
calculate now. Otherwise use calculated epsilon closure. */
|
||
if (dfa->eclosures[edest].nelem == 0)
|
||
{
|
||
err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
return err;
|
||
}
|
||
else
|
||
eclosure_elem = dfa->eclosures[edest];
|
||
/* Merge the epsilon closure of `edest'. */
|
||
re_node_set_merge (&eclosure, &eclosure_elem);
|
||
/* If the epsilon closure of `edest' is incomplete,
|
||
the epsilon closure of this node is also incomplete. */
|
||
if (dfa->eclosures[edest].nelem == 0)
|
||
{
|
||
incomplete = 1;
|
||
re_node_set_free (&eclosure_elem);
|
||
}
|
||
}
|
||
|
||
/* If the current node has constraints, duplicate all non-epsilon nodes.
|
||
Since they must inherit the constraints. */
|
||
if (constraint)
|
||
for (i = 0, max = eclosure.nelem; i < max; ++i)
|
||
{
|
||
int dest = eclosure.elems[i];
|
||
if (!IS_EPSILON_NODE (dfa->nodes[dest].type))
|
||
{
|
||
int dup_dest;
|
||
reg_errcode_t err;
|
||
err = duplicate_node (&dup_dest, dfa, dest, constraint);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
return err;
|
||
if (dest != dup_dest)
|
||
{
|
||
re_node_set_remove_at (&eclosure, i--);
|
||
re_node_set_insert (&eclosure, dup_dest);
|
||
--max;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Epsilon closures include itself. */
|
||
re_node_set_insert (&eclosure, node);
|
||
if (incomplete && !root)
|
||
dfa->eclosures[node].nelem = 0;
|
||
else
|
||
dfa->eclosures[node] = eclosure;
|
||
*new_set = eclosure;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Functions for token which are used in the parser. */
|
||
|
||
/* Fetch a token from INPUT.
|
||
We must not use this function inside bracket expressions. */
|
||
|
||
static re_token_t
|
||
fetch_token (input, syntax)
|
||
re_string_t *input;
|
||
reg_syntax_t syntax;
|
||
{
|
||
re_token_t token;
|
||
int consumed_byte;
|
||
consumed_byte = peek_token (&token, input, syntax);
|
||
re_string_skip_bytes (input, consumed_byte);
|
||
return token;
|
||
}
|
||
|
||
/* Peek a token from INPUT, and return the length of the token.
|
||
We must not use this function inside bracket expressions. */
|
||
|
||
static int
|
||
peek_token (token, input, syntax)
|
||
re_token_t *token;
|
||
re_string_t *input;
|
||
reg_syntax_t syntax;
|
||
{
|
||
unsigned char c;
|
||
|
||
if (re_string_eoi (input))
|
||
{
|
||
token->type = END_OF_RE;
|
||
return 0;
|
||
}
|
||
|
||
c = re_string_peek_byte (input, 0);
|
||
token->opr.c = c;
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
token->mb_partial = 0;
|
||
if (MB_CUR_MAX > 1 &&
|
||
!re_string_first_byte (input, re_string_cur_idx (input)))
|
||
{
|
||
token->type = CHARACTER;
|
||
token->mb_partial = 1;
|
||
return 1;
|
||
}
|
||
#endif
|
||
if (c == '\\')
|
||
{
|
||
unsigned char c2;
|
||
if (re_string_cur_idx (input) + 1 >= re_string_length (input))
|
||
{
|
||
token->type = BACK_SLASH;
|
||
return 1;
|
||
}
|
||
|
||
c2 = re_string_peek_byte_case (input, 1);
|
||
token->opr.c = c2;
|
||
token->type = CHARACTER;
|
||
switch (c2)
|
||
{
|
||
case '|':
|
||
if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR))
|
||
token->type = OP_ALT;
|
||
break;
|
||
case '1': case '2': case '3': case '4': case '5':
|
||
case '6': case '7': case '8': case '9':
|
||
if (!(syntax & RE_NO_BK_REFS))
|
||
{
|
||
token->type = OP_BACK_REF;
|
||
token->opr.idx = c2 - '0';
|
||
}
|
||
break;
|
||
case '<':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.idx = WORD_FIRST;
|
||
}
|
||
break;
|
||
case '>':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.idx = WORD_LAST;
|
||
}
|
||
break;
|
||
case 'b':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.idx = WORD_DELIM;
|
||
}
|
||
break;
|
||
case 'B':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.idx = INSIDE_WORD;
|
||
}
|
||
break;
|
||
case 'w':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
token->type = OP_WORD;
|
||
break;
|
||
case 'W':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
token->type = OP_NOTWORD;
|
||
break;
|
||
case '`':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.idx = BUF_FIRST;
|
||
}
|
||
break;
|
||
case '\'':
|
||
if (!(syntax & RE_NO_GNU_OPS))
|
||
{
|
||
token->type = ANCHOR;
|
||
token->opr.idx = BUF_LAST;
|
||
}
|
||
break;
|
||
case '(':
|
||
if (!(syntax & RE_NO_BK_PARENS))
|
||
token->type = OP_OPEN_SUBEXP;
|
||
break;
|
||
case ')':
|
||
if (!(syntax & RE_NO_BK_PARENS))
|
||
token->type = OP_CLOSE_SUBEXP;
|
||
break;
|
||
case '+':
|
||
if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
|
||
token->type = OP_DUP_PLUS;
|
||
break;
|
||
case '?':
|
||
if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM))
|
||
token->type = OP_DUP_QUESTION;
|
||
break;
|
||
case '{':
|
||
if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
|
||
token->type = OP_OPEN_DUP_NUM;
|
||
break;
|
||
case '}':
|
||
if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES)))
|
||
token->type = OP_CLOSE_DUP_NUM;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return 2;
|
||
}
|
||
|
||
token->type = CHARACTER;
|
||
switch (c)
|
||
{
|
||
case '\n':
|
||
if (syntax & RE_NEWLINE_ALT)
|
||
token->type = OP_ALT;
|
||
break;
|
||
case '|':
|
||
if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR))
|
||
token->type = OP_ALT;
|
||
break;
|
||
case '*':
|
||
token->type = OP_DUP_ASTERISK;
|
||
break;
|
||
case '+':
|
||
if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
|
||
token->type = OP_DUP_PLUS;
|
||
break;
|
||
case '?':
|
||
if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM))
|
||
token->type = OP_DUP_QUESTION;
|
||
break;
|
||
case '{':
|
||
if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|
||
token->type = OP_OPEN_DUP_NUM;
|
||
break;
|
||
case '}':
|
||
if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|
||
token->type = OP_CLOSE_DUP_NUM;
|
||
break;
|
||
case '(':
|
||
if (syntax & RE_NO_BK_PARENS)
|
||
token->type = OP_OPEN_SUBEXP;
|
||
break;
|
||
case ')':
|
||
if (syntax & RE_NO_BK_PARENS)
|
||
token->type = OP_CLOSE_SUBEXP;
|
||
break;
|
||
case '[':
|
||
token->type = OP_OPEN_BRACKET;
|
||
break;
|
||
case '.':
|
||
token->type = OP_PERIOD;
|
||
break;
|
||
case '^':
|
||
if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) &&
|
||
re_string_cur_idx (input) != 0)
|
||
{
|
||
char prev = re_string_peek_byte (input, -1);
|
||
if (prev != '|' && prev != '(' &&
|
||
(!(syntax & RE_NEWLINE_ALT) || prev != '\n'))
|
||
break;
|
||
}
|
||
token->type = ANCHOR;
|
||
token->opr.idx = LINE_FIRST;
|
||
break;
|
||
case '$':
|
||
if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) &&
|
||
re_string_cur_idx (input) + 1 != re_string_length (input))
|
||
{
|
||
re_token_t next;
|
||
re_string_skip_bytes (input, 1);
|
||
peek_token (&next, input, syntax);
|
||
re_string_skip_bytes (input, -1);
|
||
if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP)
|
||
break;
|
||
}
|
||
token->type = ANCHOR;
|
||
token->opr.idx = LINE_LAST;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Peek a token from INPUT, and return the length of the token.
|
||
We must not use this function out of bracket expressions. */
|
||
|
||
static int
|
||
peek_token_bracket (token, input, syntax)
|
||
re_token_t *token;
|
||
re_string_t *input;
|
||
reg_syntax_t syntax;
|
||
{
|
||
unsigned char c;
|
||
if (re_string_eoi (input))
|
||
{
|
||
token->type = END_OF_RE;
|
||
return 0;
|
||
}
|
||
c = re_string_peek_byte (input, 0);
|
||
token->opr.c = c;
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1 &&
|
||
!re_string_first_byte (input, re_string_cur_idx (input)))
|
||
{
|
||
token->type = CHARACTER;
|
||
return 1;
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
|
||
if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS))
|
||
{
|
||
/* In this case, '\' escape a character. */
|
||
unsigned char c2;
|
||
c2 = re_string_peek_byte (input, 1);
|
||
token->opr.c = c2;
|
||
token->type = CHARACTER;
|
||
return 1;
|
||
}
|
||
if (c == '[') /* '[' is a special char in a bracket exps. */
|
||
{
|
||
unsigned char c2;
|
||
int token_len;
|
||
c2 = re_string_peek_byte (input, 1);
|
||
token->opr.c = c2;
|
||
token_len = 2;
|
||
switch (c2)
|
||
{
|
||
case '.':
|
||
token->type = OP_OPEN_COLL_ELEM;
|
||
break;
|
||
case '=':
|
||
token->type = OP_OPEN_EQUIV_CLASS;
|
||
break;
|
||
case ':':
|
||
if (syntax & RE_CHAR_CLASSES)
|
||
{
|
||
token->type = OP_OPEN_CHAR_CLASS;
|
||
break;
|
||
}
|
||
/* else fall through. */
|
||
default:
|
||
token->type = CHARACTER;
|
||
token->opr.c = c;
|
||
token_len = 1;
|
||
break;
|
||
}
|
||
return token_len;
|
||
}
|
||
switch (c)
|
||
{
|
||
case '-':
|
||
token->type = OP_CHARSET_RANGE;
|
||
break;
|
||
case ']':
|
||
token->type = OP_CLOSE_BRACKET;
|
||
break;
|
||
case '^':
|
||
token->type = OP_NON_MATCH_LIST;
|
||
break;
|
||
default:
|
||
token->type = CHARACTER;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Functions for parser. */
|
||
|
||
/* Entry point of the parser.
|
||
Parse the regular expression REGEXP and return the structure tree.
|
||
If an error is occured, ERR is set by error code, and return NULL.
|
||
This function build the following tree, from regular expression <reg_exp>:
|
||
CAT
|
||
/ \
|
||
/ \
|
||
<reg_exp> EOR
|
||
|
||
CAT means concatenation.
|
||
EOR means end of regular expression. */
|
||
|
||
static bin_tree_t *
|
||
parse (regexp, preg, syntax, err)
|
||
re_string_t *regexp;
|
||
regex_t *preg;
|
||
reg_syntax_t syntax;
|
||
reg_errcode_t *err;
|
||
{
|
||
re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
|
||
bin_tree_t *tree, *eor, *root;
|
||
re_token_t current_token;
|
||
int new_idx;
|
||
current_token = fetch_token (regexp, syntax);
|
||
tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err);
|
||
if (BE (*err != REG_NOERROR && tree == NULL, 0))
|
||
return NULL;
|
||
new_idx = re_dfa_add_node (dfa, current_token, 0);
|
||
eor = create_tree (NULL, NULL, 0, new_idx);
|
||
if (tree != NULL)
|
||
root = create_tree (tree, eor, CONCAT, 0);
|
||
else
|
||
root = eor;
|
||
if (BE (new_idx == -1 || eor == NULL || root == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
return root;
|
||
}
|
||
|
||
/* This function build the following tree, from regular expression
|
||
<branch1>|<branch2>:
|
||
ALT
|
||
/ \
|
||
/ \
|
||
<branch1> <branch2>
|
||
|
||
ALT means alternative, which represents the operator `|'. */
|
||
|
||
static bin_tree_t *
|
||
parse_reg_exp (regexp, preg, token, syntax, nest, err)
|
||
re_string_t *regexp;
|
||
regex_t *preg;
|
||
re_token_t *token;
|
||
reg_syntax_t syntax;
|
||
int nest;
|
||
reg_errcode_t *err;
|
||
{
|
||
re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
|
||
bin_tree_t *tree, *branch = NULL;
|
||
int new_idx;
|
||
tree = parse_branch (regexp, preg, token, syntax, nest, err);
|
||
if (BE (*err != REG_NOERROR && tree == NULL, 0))
|
||
return NULL;
|
||
|
||
while (token->type == OP_ALT)
|
||
{
|
||
re_token_t alt_token = *token;
|
||
new_idx = re_dfa_add_node (dfa, alt_token, 0);
|
||
*token = fetch_token (regexp, syntax);
|
||
if (token->type != OP_ALT && token->type != END_OF_RE
|
||
&& (nest == 0 || token->type != OP_CLOSE_SUBEXP))
|
||
{
|
||
branch = parse_branch (regexp, preg, token, syntax, nest, err);
|
||
if (BE (*err != REG_NOERROR && branch == NULL, 0))
|
||
{
|
||
free_bin_tree (tree);
|
||
return NULL;
|
||
}
|
||
}
|
||
tree = create_tree (tree, branch, 0, new_idx);
|
||
if (BE (new_idx == -1 || tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
}
|
||
return tree;
|
||
}
|
||
|
||
/* This function build the following tree, from regular expression
|
||
<exp1><exp2>:
|
||
CAT
|
||
/ \
|
||
/ \
|
||
<exp1> <exp2>
|
||
|
||
CAT means concatenation. */
|
||
|
||
static bin_tree_t *
|
||
parse_branch (regexp, preg, token, syntax, nest, err)
|
||
re_string_t *regexp;
|
||
regex_t *preg;
|
||
re_token_t *token;
|
||
reg_syntax_t syntax;
|
||
int nest;
|
||
reg_errcode_t *err;
|
||
{
|
||
bin_tree_t *tree, *exp;
|
||
tree = parse_expression (regexp, preg, token, syntax, nest, err);
|
||
if (BE (*err != REG_NOERROR && tree == NULL, 0))
|
||
return NULL;
|
||
|
||
while (token->type != OP_ALT && token->type != END_OF_RE
|
||
&& (nest == 0 || token->type != OP_CLOSE_SUBEXP))
|
||
{
|
||
exp = parse_expression (regexp, preg, token, syntax, nest, err);
|
||
if (BE (*err != REG_NOERROR && exp == NULL, 0))
|
||
{
|
||
free_bin_tree (tree);
|
||
return NULL;
|
||
}
|
||
if (tree != NULL && exp != NULL)
|
||
{
|
||
tree = create_tree (tree, exp, CONCAT, 0);
|
||
if (tree == NULL)
|
||
return *err = REG_ESPACE, NULL;
|
||
}
|
||
else if (tree == NULL)
|
||
tree = exp;
|
||
/* Otherwise exp == NULL, we don't need to create new tree. */
|
||
}
|
||
return tree;
|
||
}
|
||
|
||
/* This function build the following tree, from regular expression a*:
|
||
*
|
||
|
|
||
a
|
||
*/
|
||
|
||
static bin_tree_t *
|
||
parse_expression (regexp, preg, token, syntax, nest, err)
|
||
re_string_t *regexp;
|
||
regex_t *preg;
|
||
re_token_t *token;
|
||
reg_syntax_t syntax;
|
||
int nest;
|
||
reg_errcode_t *err;
|
||
{
|
||
re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
|
||
bin_tree_t *tree;
|
||
int new_idx;
|
||
switch (token->type)
|
||
{
|
||
case CHARACTER:
|
||
new_idx = re_dfa_add_node (dfa, *token, 0);
|
||
tree = create_tree (NULL, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
#ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1)
|
||
{
|
||
while (!re_string_eoi (regexp)
|
||
&& !re_string_first_byte (regexp, re_string_cur_idx (regexp)))
|
||
{
|
||
bin_tree_t *mbc_remain;
|
||
*token = fetch_token (regexp, syntax);
|
||
new_idx = re_dfa_add_node (dfa, *token, 0);
|
||
mbc_remain = create_tree (NULL, NULL, 0, new_idx);
|
||
tree = create_tree (tree, mbc_remain, CONCAT, 0);
|
||
if (BE (new_idx == -1 || mbc_remain == NULL || tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
}
|
||
}
|
||
#endif
|
||
break;
|
||
case OP_OPEN_SUBEXP:
|
||
tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err);
|
||
if (BE (*err != REG_NOERROR && tree == NULL, 0))
|
||
return NULL;
|
||
break;
|
||
case OP_OPEN_BRACKET:
|
||
tree = parse_bracket_exp (regexp, dfa, token, syntax, err);
|
||
if (BE (*err != REG_NOERROR && tree == NULL, 0))
|
||
return NULL;
|
||
break;
|
||
case OP_BACK_REF:
|
||
if (BE (preg->re_nsub < token->opr.idx
|
||
|| dfa->subexps[token->opr.idx - 1].end == -1, 0))
|
||
{
|
||
*err = REG_ESUBREG;
|
||
return NULL;
|
||
}
|
||
new_idx = re_dfa_add_node (dfa, *token, 0);
|
||
tree = create_tree (NULL, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
++dfa->nbackref;
|
||
dfa->has_mb_node = 1;
|
||
break;
|
||
case OP_DUP_ASTERISK:
|
||
case OP_DUP_PLUS:
|
||
case OP_DUP_QUESTION:
|
||
case OP_OPEN_DUP_NUM:
|
||
if (syntax & RE_CONTEXT_INVALID_OPS)
|
||
return *err = REG_BADRPT, NULL;
|
||
else if (syntax & RE_CONTEXT_INDEP_OPS)
|
||
{
|
||
*token = fetch_token (regexp, syntax);
|
||
return parse_expression (regexp, preg, token, syntax, nest, err);
|
||
}
|
||
/* else fall through */
|
||
case OP_CLOSE_SUBEXP:
|
||
if ((token->type == OP_CLOSE_SUBEXP) &&
|
||
!(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD))
|
||
return *err = REG_ERPAREN, NULL;
|
||
/* else fall through */
|
||
case OP_CLOSE_DUP_NUM:
|
||
/* We treat it as a normal character. */
|
||
|
||
/* Then we can these characters as normal characters. */
|
||
token->type = CHARACTER;
|
||
new_idx = re_dfa_add_node (dfa, *token, 0);
|
||
tree = create_tree (NULL, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
break;
|
||
case ANCHOR:
|
||
if (dfa->word_char == NULL)
|
||
{
|
||
*err = init_word_char (dfa);
|
||
if (BE (*err != REG_NOERROR, 0))
|
||
return NULL;
|
||
}
|
||
if (token->opr.ctx_type == WORD_DELIM)
|
||
{
|
||
bin_tree_t *tree_first, *tree_last;
|
||
int idx_first, idx_last;
|
||
token->opr.ctx_type = WORD_FIRST;
|
||
idx_first = re_dfa_add_node (dfa, *token, 0);
|
||
tree_first = create_tree (NULL, NULL, 0, idx_first);
|
||
token->opr.ctx_type = WORD_LAST;
|
||
idx_last = re_dfa_add_node (dfa, *token, 0);
|
||
tree_last = create_tree (NULL, NULL, 0, idx_last);
|
||
token->type = OP_ALT;
|
||
new_idx = re_dfa_add_node (dfa, *token, 0);
|
||
tree = create_tree (tree_first, tree_last, 0, new_idx);
|
||
if (BE (idx_first == -1 || idx_last == -1 || new_idx == -1
|
||
|| tree_first == NULL || tree_last == NULL
|
||
|| tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
}
|
||
else
|
||
{
|
||
new_idx = re_dfa_add_node (dfa, *token, 0);
|
||
tree = create_tree (NULL, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
}
|
||
/* We must return here, since ANCHORs can't be followed
|
||
by repetition operators.
|
||
eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>",
|
||
it must not be "<ANCHOR(^)><REPEAT(*)>". */
|
||
*token = fetch_token (regexp, syntax);
|
||
return tree;
|
||
case OP_PERIOD:
|
||
new_idx = re_dfa_add_node (dfa, *token, 0);
|
||
tree = create_tree (NULL, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
if (MB_CUR_MAX > 1)
|
||
dfa->has_mb_node = 1;
|
||
break;
|
||
case OP_WORD:
|
||
tree = build_word_op (dfa, 0, err);
|
||
if (BE (*err != REG_NOERROR && tree == NULL, 0))
|
||
return NULL;
|
||
break;
|
||
case OP_NOTWORD:
|
||
tree = build_word_op (dfa, 1, err);
|
||
if (BE (*err != REG_NOERROR && tree == NULL, 0))
|
||
return NULL;
|
||
break;
|
||
case OP_ALT:
|
||
case END_OF_RE:
|
||
return NULL;
|
||
case BACK_SLASH:
|
||
*err = REG_EESCAPE;
|
||
return NULL;
|
||
default:
|
||
/* Must not happen? */
|
||
#ifdef DEBUG
|
||
assert (0);
|
||
#endif
|
||
return NULL;
|
||
}
|
||
*token = fetch_token (regexp, syntax);
|
||
|
||
while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS
|
||
|| token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM)
|
||
{
|
||
tree = parse_dup_op (tree, regexp, dfa, token, syntax, err);
|
||
if (BE (*err != REG_NOERROR && tree == NULL, 0))
|
||
return NULL;
|
||
}
|
||
|
||
return tree;
|
||
}
|
||
|
||
/* This function build the following tree, from regular expression
|
||
(<reg_exp>):
|
||
SUBEXP
|
||
|
|
||
<reg_exp>
|
||
*/
|
||
|
||
static bin_tree_t *
|
||
parse_sub_exp (regexp, preg, token, syntax, nest, err)
|
||
re_string_t *regexp;
|
||
regex_t *preg;
|
||
re_token_t *token;
|
||
reg_syntax_t syntax;
|
||
int nest;
|
||
reg_errcode_t *err;
|
||
{
|
||
re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
|
||
bin_tree_t *tree;
|
||
size_t cur_nsub;
|
||
cur_nsub = preg->re_nsub++;
|
||
if (dfa->subexps_alloc < preg->re_nsub)
|
||
{
|
||
re_subexp_t *new_array;
|
||
dfa->subexps_alloc *= 2;
|
||
new_array = re_realloc (dfa->subexps, re_subexp_t, dfa->subexps_alloc);
|
||
if (BE (new_array == NULL, 0))
|
||
{
|
||
dfa->subexps_alloc /= 2;
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
dfa->subexps = new_array;
|
||
}
|
||
dfa->subexps[cur_nsub].start = dfa->nodes_len;
|
||
dfa->subexps[cur_nsub].end = -1;
|
||
*token = fetch_token (regexp, syntax);
|
||
|
||
/* The subexpression may be a null string. */
|
||
if (token->type == OP_CLOSE_SUBEXP)
|
||
{
|
||
tree = create_tree (NULL, NULL, SUBEXP, 0);
|
||
if (BE (tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
dfa->subexps[cur_nsub].end = dfa->nodes_len;
|
||
}
|
||
else
|
||
{
|
||
tree = parse_reg_exp (regexp, preg, token, syntax, nest, err);
|
||
if (BE (*err != REG_NOERROR && tree == NULL, 0))
|
||
return NULL;
|
||
dfa->subexps[cur_nsub].end = dfa->nodes_len;
|
||
if (BE (token->type != OP_CLOSE_SUBEXP, 0))
|
||
{
|
||
free_bin_tree (tree);
|
||
*err = REG_BADPAT;
|
||
return NULL;
|
||
}
|
||
tree = create_tree (tree, NULL, SUBEXP, 0);
|
||
}
|
||
return tree;
|
||
}
|
||
|
||
/* This function parse repetition operators like "*", "+", "{1,3}" etc. */
|
||
|
||
static bin_tree_t *
|
||
parse_dup_op (dup_elem, regexp, dfa, token, syntax, err)
|
||
bin_tree_t *dup_elem;
|
||
re_string_t *regexp;
|
||
re_dfa_t *dfa;
|
||
re_token_t *token;
|
||
reg_syntax_t syntax;
|
||
reg_errcode_t *err;
|
||
{
|
||
re_token_t dup_token;
|
||
bin_tree_t *tree = dup_elem, *work_tree;
|
||
int new_idx, start_idx = re_string_cur_idx (regexp);
|
||
re_token_t start_token = *token;
|
||
if (token->type == OP_OPEN_DUP_NUM)
|
||
{
|
||
int i;
|
||
int end = 0;
|
||
int start = fetch_number (regexp, token, syntax);
|
||
bin_tree_t *elem;
|
||
if (start == -1)
|
||
{
|
||
if (token->type == CHARACTER && token->opr.c == ',')
|
||
start = 0; /* We treat "{,m}" as "{0,m}". */
|
||
else
|
||
{
|
||
*err = REG_BADBR; /* <re>{} is invalid. */
|
||
return NULL;
|
||
}
|
||
}
|
||
if (BE (start != -2, 1))
|
||
{
|
||
/* We treat "{n}" as "{n,n}". */
|
||
end = ((token->type == OP_CLOSE_DUP_NUM) ? start
|
||
: ((token->type == CHARACTER && token->opr.c == ',')
|
||
? fetch_number (regexp, token, syntax) : -2));
|
||
}
|
||
if (BE (start == -2 || end == -2, 0))
|
||
{
|
||
/* Invalid sequence. */
|
||
if (token->type == OP_CLOSE_DUP_NUM)
|
||
goto parse_dup_op_invalid_interval;
|
||
else
|
||
goto parse_dup_op_ebrace;
|
||
}
|
||
if (BE (start == 0 && end == 0, 0))
|
||
{
|
||
/* We treat "<re>{0}" and "<re>{0,0}" as null string. */
|
||
*token = fetch_token (regexp, syntax);
|
||
free_bin_tree (dup_elem);
|
||
return NULL;
|
||
}
|
||
|
||
/* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}". */
|
||
elem = tree;
|
||
for (i = 0; i < start; ++i)
|
||
if (i != 0)
|
||
{
|
||
work_tree = duplicate_tree (elem, dfa);
|
||
tree = create_tree (tree, work_tree, CONCAT, 0);
|
||
if (BE (work_tree == NULL || tree == NULL, 0))
|
||
goto parse_dup_op_espace;
|
||
}
|
||
|
||
if (end == -1)
|
||
{
|
||
/* We treat "<re>{0,}" as "<re>*". */
|
||
dup_token.type = OP_DUP_ASTERISK;
|
||
if (start > 0)
|
||
{
|
||
elem = duplicate_tree (elem, dfa);
|
||
new_idx = re_dfa_add_node (dfa, dup_token, 0);
|
||
work_tree = create_tree (elem, NULL, 0, new_idx);
|
||
tree = create_tree (tree, work_tree, CONCAT, 0);
|
||
if (BE (elem == NULL || new_idx == -1 || work_tree == NULL
|
||
|| tree == NULL, 0))
|
||
goto parse_dup_op_espace;
|
||
}
|
||
else
|
||
{
|
||
new_idx = re_dfa_add_node (dfa, dup_token, 0);
|
||
tree = create_tree (elem, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || tree == NULL, 0))
|
||
goto parse_dup_op_espace;
|
||
}
|
||
}
|
||
else if (end - start > 0)
|
||
{
|
||
/* Then extract "<re>{0,m}" to "<re>?<re>?...<re>?". */
|
||
dup_token.type = OP_DUP_QUESTION;
|
||
if (start > 0)
|
||
{
|
||
elem = duplicate_tree (elem, dfa);
|
||
new_idx = re_dfa_add_node (dfa, dup_token, 0);
|
||
elem = create_tree (elem, NULL, 0, new_idx);
|
||
tree = create_tree (tree, elem, CONCAT, 0);
|
||
if (BE (elem == NULL || new_idx == -1 || tree == NULL, 0))
|
||
goto parse_dup_op_espace;
|
||
}
|
||
else
|
||
{
|
||
new_idx = re_dfa_add_node (dfa, dup_token, 0);
|
||
tree = elem = create_tree (elem, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || tree == NULL, 0))
|
||
goto parse_dup_op_espace;
|
||
}
|
||
for (i = 1; i < end - start; ++i)
|
||
{
|
||
work_tree = duplicate_tree (elem, dfa);
|
||
tree = create_tree (tree, work_tree, CONCAT, 0);
|
||
if (BE (work_tree == NULL || tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
new_idx = re_dfa_add_node (dfa, *token, 0);
|
||
tree = create_tree (tree, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || tree == NULL, 0))
|
||
return *err = REG_ESPACE, NULL;
|
||
}
|
||
*token = fetch_token (regexp, syntax);
|
||
return tree;
|
||
|
||
parse_dup_op_espace:
|
||
free_bin_tree (tree);
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
|
||
parse_dup_op_ebrace:
|
||
if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0))
|
||
{
|
||
*err = REG_EBRACE;
|
||
return NULL;
|
||
}
|
||
goto parse_dup_op_rollback;
|
||
parse_dup_op_invalid_interval:
|
||
if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0))
|
||
{
|
||
*err = REG_BADBR;
|
||
return NULL;
|
||
}
|
||
parse_dup_op_rollback:
|
||
re_string_set_index (regexp, start_idx);
|
||
*token = start_token;
|
||
token->type = CHARACTER;
|
||
return dup_elem;
|
||
}
|
||
|
||
/* Size of the names for collating symbol/equivalence_class/character_class.
|
||
I'm not sure, but maybe enough. */
|
||
#define BRACKET_NAME_BUF_SIZE 32
|
||
|
||
#ifndef _LIBC
|
||
/* Local function for parse_bracket_exp only used in case of NOT _LIBC.
|
||
Build the range expression which starts from START_ELEM, and ends
|
||
at END_ELEM. The result are written to MBCSET and SBCSET.
|
||
RANGE_ALLOC is the allocated size of mbcset->range_starts, and
|
||
mbcset->range_ends, is a pointer argument sinse we may
|
||
update it. */
|
||
|
||
static reg_errcode_t
|
||
build_range_exp (mbcset, sbcset, range_alloc, start_elem, end_elem)
|
||
re_charset_t *mbcset;
|
||
re_bitset_ptr_t sbcset;
|
||
int *range_alloc;
|
||
bracket_elem_t *start_elem, *end_elem;
|
||
{
|
||
unsigned int start_ch, end_ch;
|
||
/* Equivalence Classes and Character Classes can't be a range start/end. */
|
||
if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS
|
||
|| end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS,
|
||
0))
|
||
return REG_ERANGE;
|
||
|
||
/* We can handle no multi character collating elements without libc
|
||
support. */
|
||
if (BE ((start_elem->type == COLL_SYM && strlen (start_elem->opr.name) > 1)
|
||
|| (end_elem->type == COLL_SYM && strlen (end_elem->opr.name) > 1),
|
||
0))
|
||
return REG_ECOLLATE;
|
||
|
||
# ifdef RE_ENABLE_I18N
|
||
{
|
||
wchar_t wc, start_wc, end_wc;
|
||
wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
|
||
|
||
start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch
|
||
: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
|
||
: 0));
|
||
end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch
|
||
: ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
|
||
: 0));
|
||
start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM)
|
||
? __btowc (start_ch) : start_elem->opr.wch);
|
||
end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM)
|
||
? __btowc (end_ch) : end_elem->opr.wch);
|
||
cmp_buf[0] = start_wc;
|
||
cmp_buf[4] = end_wc;
|
||
if (wcscoll (cmp_buf, cmp_buf + 4) > 0)
|
||
return REG_ERANGE;
|
||
|
||
/* Check the space of the arrays. */
|
||
if (*range_alloc == mbcset->nranges)
|
||
{
|
||
/* There are not enough space, need realloc. */
|
||
wchar_t *new_array_start, *new_array_end;
|
||
int new_nranges;
|
||
|
||
/* +1 in case of mbcset->nranges is 0. */
|
||
new_nranges = 2 * mbcset->nranges + 1;
|
||
/* Use realloc since mbcset->range_starts and mbcset->range_ends
|
||
are NULL if *range_alloc == 0. */
|
||
new_array_start = re_realloc (mbcset->range_starts, wchar_t,
|
||
new_nranges);
|
||
new_array_end = re_realloc (mbcset->range_ends, wchar_t,
|
||
new_nranges);
|
||
|
||
if (BE (new_array_start == NULL || new_array_end == NULL, 0))
|
||
return REG_ESPACE;
|
||
|
||
mbcset->range_starts = new_array_start;
|
||
mbcset->range_ends = new_array_end;
|
||
*range_alloc = new_nranges;
|
||
}
|
||
|
||
mbcset->range_starts[mbcset->nranges] = start_wc;
|
||
mbcset->range_ends[mbcset->nranges++] = end_wc;
|
||
|
||
/* Build the table for single byte characters. */
|
||
for (wc = 0; wc <= SBC_MAX; ++wc)
|
||
{
|
||
cmp_buf[2] = wc;
|
||
if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
|
||
&& wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
|
||
bitset_set (sbcset, wc);
|
||
}
|
||
}
|
||
# else /* not RE_ENABLE_I18N */
|
||
{
|
||
unsigned int ch;
|
||
start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch
|
||
: ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0]
|
||
: 0));
|
||
end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch
|
||
: ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0]
|
||
: 0));
|
||
if (start_ch > end_ch)
|
||
return REG_ERANGE;
|
||
/* Build the table for single byte characters. */
|
||
for (ch = 0; ch <= SBC_MAX; ++ch)
|
||
if (start_ch <= ch && ch <= end_ch)
|
||
bitset_set (sbcset, ch);
|
||
}
|
||
# endif /* not RE_ENABLE_I18N */
|
||
return REG_NOERROR;
|
||
}
|
||
#endif /* not _LIBC */
|
||
|
||
#ifndef _LIBC
|
||
/* Helper function for parse_bracket_exp only used in case of NOT _LIBC..
|
||
Build the collating element which is represented by NAME.
|
||
The result are written to MBCSET and SBCSET.
|
||
COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
|
||
pointer argument since we may update it. */
|
||
|
||
static reg_errcode_t
|
||
build_collating_symbol (mbcset, sbcset, coll_sym_alloc, name)
|
||
re_charset_t *mbcset;
|
||
re_bitset_ptr_t sbcset;
|
||
int *coll_sym_alloc;
|
||
unsigned char *name;
|
||
{
|
||
if (BE (strlen (name) != 1, 0))
|
||
return REG_ECOLLATE;
|
||
else
|
||
{
|
||
bitset_set (sbcset, name[0]);
|
||
return REG_NOERROR;
|
||
}
|
||
}
|
||
#endif /* not _LIBC */
|
||
|
||
/* This function parse bracket expression like "[abc]", "[a-c]",
|
||
"[[.a-a.]]" etc. */
|
||
|
||
static bin_tree_t *
|
||
parse_bracket_exp (regexp, dfa, token, syntax, err)
|
||
re_string_t *regexp;
|
||
re_dfa_t *dfa;
|
||
re_token_t *token;
|
||
reg_syntax_t syntax;
|
||
reg_errcode_t *err;
|
||
{
|
||
#ifdef _LIBC
|
||
const unsigned char *collseqmb, *collseqwc;
|
||
uint32_t nrules;
|
||
int32_t table_size;
|
||
const int32_t *symb_table;
|
||
const unsigned char *extra;
|
||
|
||
/* Local function for parse_bracket_exp used in _LIBC environement.
|
||
Seek the collating symbol entry correspondings to NAME.
|
||
Return the index of the symbol in the SYMB_TABLE. */
|
||
|
||
static inline int32_t
|
||
seek_collating_symbol_entry (name, name_len)
|
||
unsigned char *name;
|
||
size_t name_len;
|
||
{
|
||
int32_t hash = elem_hash (name, name_len);
|
||
int32_t elem = hash % table_size;
|
||
int32_t second = hash % (table_size - 2);
|
||
while (symb_table[2 * elem] != 0)
|
||
{
|
||
/* First compare the hashing value. */
|
||
if (symb_table[2 * elem] == hash
|
||
/* Compare the length of the name. */
|
||
&& name_len == extra[symb_table[2 * elem + 1]]
|
||
/* Compare the name. */
|
||
&& memcmp (name, &extra[symb_table[2 * elem + 1] + 1],
|
||
name_len) == 0)
|
||
{
|
||
/* Yep, this is the entry. */
|
||
break;
|
||
}
|
||
|
||
/* Next entry. */
|
||
elem += second;
|
||
}
|
||
return elem;
|
||
}
|
||
|
||
/* Local function for parse_bracket_exp used in _LIBC environement.
|
||
Look up the collation sequence value of BR_ELEM.
|
||
Return the value if succeeded, UINT_MAX otherwise. */
|
||
|
||
static inline unsigned int
|
||
lookup_collation_sequence_value (br_elem)
|
||
bracket_elem_t *br_elem;
|
||
{
|
||
if (br_elem->type == SB_CHAR)
|
||
{
|
||
/*
|
||
if (MB_CUR_MAX == 1)
|
||
*/
|
||
if (nrules == 0)
|
||
return collseqmb[br_elem->opr.ch];
|
||
else
|
||
{
|
||
wint_t wc = __btowc (br_elem->opr.ch);
|
||
return collseq_table_lookup (collseqwc, wc);
|
||
}
|
||
}
|
||
else if (br_elem->type == MB_CHAR)
|
||
{
|
||
return collseq_table_lookup (collseqwc, br_elem->opr.wch);
|
||
}
|
||
else if (br_elem->type == COLL_SYM)
|
||
{
|
||
if (nrules != 0)
|
||
{
|
||
int32_t elem, idx;
|
||
elem = seek_collating_symbol_entry (br_elem->opr.name,
|
||
strlen (br_elem->opr.name));
|
||
if (symb_table[2 * elem] != 0)
|
||
{
|
||
/* We found the entry. */
|
||
idx = symb_table[2 * elem + 1];
|
||
/* Skip the name of collating element name. */
|
||
idx += 1 + extra[idx];
|
||
/* Skip the byte sequence of the collating element. */
|
||
idx += 1 + extra[idx];
|
||
/* Adjust for the alignment. */
|
||
idx = (idx + 3) & ~3;
|
||
/* Skip the multibyte collation sequence value. */
|
||
idx += sizeof (unsigned int);
|
||
/* Skip the wide char sequence of the collating element. */
|
||
idx += sizeof (unsigned int) *
|
||
(1 + *(unsigned int *) (extra + idx));
|
||
/* Return the collation sequence value. */
|
||
return *(unsigned int *) (extra + idx);
|
||
}
|
||
else if (symb_table[2 * elem] == 0 &&
|
||
strlen (br_elem->opr.name) == 1)
|
||
{
|
||
/* No valid character. Match it as a single byte
|
||
character. */
|
||
return collseqmb[br_elem->opr.name[0]];
|
||
}
|
||
}
|
||
else if (strlen (br_elem->opr.name) == 1)
|
||
return collseqmb[br_elem->opr.name[0]];
|
||
}
|
||
return UINT_MAX;
|
||
}
|
||
|
||
/* Local function for parse_bracket_exp used in _LIBC environement.
|
||
Build the range expression which starts from START_ELEM, and ends
|
||
at END_ELEM. The result are written to MBCSET and SBCSET.
|
||
RANGE_ALLOC is the allocated size of mbcset->range_starts, and
|
||
mbcset->range_ends, is a pointer argument sinse we may
|
||
update it. */
|
||
|
||
static inline reg_errcode_t
|
||
build_range_exp (mbcset, sbcset, range_alloc, start_elem, end_elem)
|
||
re_charset_t *mbcset;
|
||
re_bitset_ptr_t sbcset;
|
||
int *range_alloc;
|
||
bracket_elem_t *start_elem, *end_elem;
|
||
{
|
||
unsigned int ch;
|
||
uint32_t start_collseq;
|
||
uint32_t end_collseq;
|
||
|
||
/* Check the space of the arrays. */
|
||
if (*range_alloc == mbcset->nranges)
|
||
{
|
||
/* There are not enough space, need realloc. */
|
||
uint32_t *new_array_start;
|
||
uint32_t *new_array_end;
|
||
int new_nranges;
|
||
|
||
/* +1 in case of mbcset->nranges is 0. */
|
||
new_nranges = 2 * mbcset->nranges + 1;
|
||
/* Use realloc since mbcset->range_starts and mbcset->range_ends
|
||
are NULL if *range_alloc == 0. */
|
||
new_array_start = re_realloc (mbcset->range_starts, uint32_t,
|
||
new_nranges);
|
||
new_array_end = re_realloc (mbcset->range_ends, uint32_t,
|
||
new_nranges);
|
||
|
||
if (BE (new_array_start == NULL || new_array_end == NULL, 0))
|
||
return REG_ESPACE;
|
||
|
||
mbcset->range_starts = new_array_start;
|
||
mbcset->range_ends = new_array_end;
|
||
*range_alloc = new_nranges;
|
||
}
|
||
|
||
/* Equivalence Classes and Character Classes can't be a range
|
||
start/end. */
|
||
if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS
|
||
|| end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS,
|
||
0))
|
||
return REG_ERANGE;
|
||
|
||
start_collseq = lookup_collation_sequence_value (start_elem);
|
||
end_collseq = lookup_collation_sequence_value (end_elem);
|
||
/* Check start/end collation sequence values. */
|
||
if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0))
|
||
return REG_ECOLLATE;
|
||
if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0))
|
||
return REG_ERANGE;
|
||
|
||
/* Got valid collation sequence values, add them as a new entry. */
|
||
mbcset->range_starts[mbcset->nranges] = start_collseq;
|
||
mbcset->range_ends[mbcset->nranges++] = end_collseq;
|
||
|
||
/* Build the table for single byte characters. */
|
||
for (ch = 0; ch <= SBC_MAX; ch++)
|
||
{
|
||
uint32_t ch_collseq;
|
||
/*
|
||
if (MB_CUR_MAX == 1)
|
||
*/
|
||
if (nrules == 0)
|
||
ch_collseq = collseqmb[ch];
|
||
else
|
||
ch_collseq = collseq_table_lookup (collseqwc, __btowc (ch));
|
||
if (start_collseq <= ch_collseq && ch_collseq <= end_collseq)
|
||
bitset_set (sbcset, ch);
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Local function for parse_bracket_exp used in _LIBC environement.
|
||
Build the collating element which is represented by NAME.
|
||
The result are written to MBCSET and SBCSET.
|
||
COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a
|
||
pointer argument sinse we may update it. */
|
||
|
||
static inline reg_errcode_t
|
||
build_collating_symbol (mbcset, sbcset, coll_sym_alloc, name)
|
||
re_charset_t *mbcset;
|
||
re_bitset_ptr_t sbcset;
|
||
int *coll_sym_alloc;
|
||
unsigned char *name;
|
||
{
|
||
int32_t elem, idx;
|
||
if (nrules != 0)
|
||
{
|
||
elem = seek_collating_symbol_entry (name, strlen (name));
|
||
if (symb_table[2 * elem] != 0)
|
||
{
|
||
/* We found the entry. */
|
||
idx = symb_table[2 * elem + 1];
|
||
/* Skip the name of collating element name. */
|
||
idx += 1 + extra[idx];
|
||
}
|
||
else if (symb_table[2 * elem] == 0 && strlen (name) == 1)
|
||
{
|
||
/* No valid character, treat it as a normal
|
||
character. */
|
||
bitset_set (sbcset, name[0]);
|
||
return REG_NOERROR;
|
||
}
|
||
else
|
||
return REG_ECOLLATE;
|
||
|
||
/* Got valid collation sequence, add it as a new entry. */
|
||
/* Check the space of the arrays. */
|
||
if (*coll_sym_alloc == mbcset->ncoll_syms)
|
||
{
|
||
/* Not enough, realloc it. */
|
||
/* +1 in case of mbcset->ncoll_syms is 0. */
|
||
*coll_sym_alloc = 2 * mbcset->ncoll_syms + 1;
|
||
/* Use realloc since mbcset->coll_syms is NULL
|
||
if *alloc == 0. */
|
||
mbcset->coll_syms = re_realloc (mbcset->coll_syms, int32_t,
|
||
*coll_sym_alloc);
|
||
if (BE (mbcset->coll_syms == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
mbcset->coll_syms[mbcset->ncoll_syms++] = idx;
|
||
return REG_NOERROR;
|
||
}
|
||
else
|
||
{
|
||
if (BE (strlen (name) != 1, 0))
|
||
return REG_ECOLLATE;
|
||
else
|
||
{
|
||
bitset_set (sbcset, name[0]);
|
||
return REG_NOERROR;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
re_token_t br_token;
|
||
re_bitset_ptr_t sbcset;
|
||
re_charset_t *mbcset;
|
||
bin_tree_t *work_tree;
|
||
int token_len, new_idx;
|
||
int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0;
|
||
int equiv_class_alloc = 0, char_class_alloc = 0;
|
||
#ifdef _LIBC
|
||
collseqmb = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
|
||
nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
||
if (nrules)
|
||
{
|
||
/*
|
||
if (MB_CUR_MAX > 1)
|
||
*/
|
||
collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
|
||
table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB);
|
||
symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE,
|
||
_NL_COLLATE_SYMB_TABLEMB);
|
||
extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
|
||
_NL_COLLATE_SYMB_EXTRAMB);
|
||
}
|
||
#endif
|
||
sbcset = (re_bitset_ptr_t) calloc (sizeof (unsigned int), BITSET_UINTS);
|
||
mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
|
||
if (BE (sbcset == NULL || mbcset == NULL, 0))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
|
||
token_len = peek_token_bracket (token, regexp, syntax);
|
||
if (BE (token->type == END_OF_RE, 0))
|
||
{
|
||
*err = REG_BADPAT;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
if (token->type == OP_NON_MATCH_LIST)
|
||
{
|
||
int i;
|
||
mbcset->non_match = 1;
|
||
if (syntax & RE_HAT_LISTS_NOT_NEWLINE)
|
||
bitset_set (sbcset, '\0');
|
||
re_string_skip_bytes (regexp, token_len); /* Skip a token. */
|
||
token_len = peek_token_bracket (token, regexp, syntax);
|
||
if (BE (token->type == END_OF_RE, 0))
|
||
{
|
||
*err = REG_BADPAT;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
if (MB_CUR_MAX > 1)
|
||
for (i = 0; i < SBC_MAX; ++i)
|
||
if (__btowc (i) == WEOF)
|
||
bitset_set (sbcset, i);
|
||
}
|
||
|
||
/* We treat the first ']' as a normal character. */
|
||
if (token->type == OP_CLOSE_BRACKET)
|
||
token->type = CHARACTER;
|
||
|
||
while (1)
|
||
{
|
||
bracket_elem_t start_elem, end_elem;
|
||
unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE];
|
||
unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE];
|
||
reg_errcode_t ret;
|
||
int token_len2 = 0, is_range_exp = 0;
|
||
re_token_t token2;
|
||
|
||
start_elem.opr.name = start_name_buf;
|
||
ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa,
|
||
syntax);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
{
|
||
*err = ret;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
|
||
token_len = peek_token_bracket (token, regexp, syntax);
|
||
if (BE (token->type == END_OF_RE, 0))
|
||
{
|
||
*err = REG_BADPAT;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
if (token->type == OP_CHARSET_RANGE)
|
||
{
|
||
re_string_skip_bytes (regexp, token_len); /* Skip '-'. */
|
||
token_len2 = peek_token_bracket (&token2, regexp, syntax);
|
||
if (BE (token->type == END_OF_RE, 0))
|
||
{
|
||
*err = REG_BADPAT;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
if (token2.type == OP_CLOSE_BRACKET)
|
||
{
|
||
/* We treat the last '-' as a normal character. */
|
||
re_string_skip_bytes (regexp, -token_len);
|
||
token->type = CHARACTER;
|
||
}
|
||
else
|
||
is_range_exp = 1;
|
||
}
|
||
|
||
if (is_range_exp == 1)
|
||
{
|
||
end_elem.opr.name = end_name_buf;
|
||
ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2,
|
||
dfa, syntax);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
{
|
||
*err = ret;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
|
||
token_len = peek_token_bracket (token, regexp, syntax);
|
||
if (BE (token->type == END_OF_RE, 0))
|
||
{
|
||
*err = REG_BADPAT;
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
*err = build_range_exp (mbcset, sbcset, &range_alloc, &start_elem,
|
||
&end_elem);
|
||
if (BE (*err != REG_NOERROR, 0))
|
||
goto parse_bracket_exp_free_return;
|
||
}
|
||
else
|
||
{
|
||
switch (start_elem.type)
|
||
{
|
||
case SB_CHAR:
|
||
bitset_set (sbcset, start_elem.opr.ch);
|
||
break;
|
||
case MB_CHAR:
|
||
/* Check whether the array has enough space. */
|
||
if (mbchar_alloc == mbcset->nmbchars)
|
||
{
|
||
/* Not enough, realloc it. */
|
||
/* +1 in case of mbcset->nmbchars is 0. */
|
||
mbchar_alloc = 2 * mbcset->nmbchars + 1;
|
||
/* Use realloc since array is NULL if *alloc == 0. */
|
||
mbcset->mbchars = re_realloc (mbcset->mbchars, wchar_t,
|
||
mbchar_alloc);
|
||
if (BE (mbcset->mbchars == NULL, 0))
|
||
goto parse_bracket_exp_espace;
|
||
}
|
||
mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch;
|
||
break;
|
||
case EQUIV_CLASS:
|
||
*err = build_equiv_class (mbcset, sbcset, &equiv_class_alloc,
|
||
start_elem.opr.name);
|
||
if (BE (*err != REG_NOERROR, 0))
|
||
goto parse_bracket_exp_free_return;
|
||
break;
|
||
case COLL_SYM:
|
||
*err = build_collating_symbol (mbcset, sbcset, &coll_sym_alloc,
|
||
start_elem.opr.name);
|
||
if (BE (*err != REG_NOERROR, 0))
|
||
goto parse_bracket_exp_free_return;
|
||
break;
|
||
case CHAR_CLASS:
|
||
ret = build_charclass (mbcset, sbcset, &char_class_alloc,
|
||
start_elem.opr.name, syntax);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
goto parse_bracket_exp_espace;
|
||
break;
|
||
default:
|
||
assert (0);
|
||
break;
|
||
}
|
||
}
|
||
if (token->type == OP_CLOSE_BRACKET)
|
||
break;
|
||
}
|
||
|
||
re_string_skip_bytes (regexp, token_len); /* Skip a token. */
|
||
|
||
/* If it is non-matching list. */
|
||
if (mbcset->non_match)
|
||
bitset_not (sbcset);
|
||
|
||
/* Build a tree for simple bracket. */
|
||
br_token.type = SIMPLE_BRACKET;
|
||
br_token.opr.sbcset = sbcset;
|
||
new_idx = re_dfa_add_node (dfa, br_token, 0);
|
||
work_tree = create_tree (NULL, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || work_tree == NULL, 0))
|
||
goto parse_bracket_exp_espace;
|
||
|
||
if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes
|
||
|| mbcset->nranges || (MB_CUR_MAX > 1 && (mbcset->nchar_classes
|
||
|| mbcset->non_match)))
|
||
{
|
||
re_token_t alt_token;
|
||
bin_tree_t *mbc_tree;
|
||
/* Build a tree for complex bracket. */
|
||
br_token.type = COMPLEX_BRACKET;
|
||
br_token.opr.mbcset = mbcset;
|
||
dfa->has_mb_node = 1;
|
||
new_idx = re_dfa_add_node (dfa, br_token, 0);
|
||
mbc_tree = create_tree (NULL, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || mbc_tree == NULL, 0))
|
||
goto parse_bracket_exp_espace;
|
||
/* Then join them by ALT node. */
|
||
alt_token.type = OP_ALT;
|
||
new_idx = re_dfa_add_node (dfa, alt_token, 0);
|
||
work_tree = create_tree (work_tree, mbc_tree, 0, new_idx);
|
||
if (BE (new_idx != -1 && mbc_tree != NULL, 1))
|
||
return work_tree;
|
||
}
|
||
else
|
||
{
|
||
free_charset (mbcset);
|
||
return work_tree;
|
||
}
|
||
|
||
parse_bracket_exp_espace:
|
||
*err = REG_ESPACE;
|
||
parse_bracket_exp_free_return:
|
||
re_free (sbcset);
|
||
free_charset (mbcset);
|
||
return NULL;
|
||
}
|
||
|
||
/* Parse an element in the bracket expression. */
|
||
|
||
static reg_errcode_t
|
||
parse_bracket_element (elem, regexp, token, token_len, dfa, syntax)
|
||
bracket_elem_t *elem;
|
||
re_string_t *regexp;
|
||
re_token_t *token;
|
||
int token_len;
|
||
re_dfa_t *dfa;
|
||
reg_syntax_t syntax;
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
int cur_char_size;
|
||
cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp));
|
||
if (cur_char_size > 1)
|
||
{
|
||
elem->type = MB_CHAR;
|
||
elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp));
|
||
re_string_skip_bytes (regexp, cur_char_size);
|
||
return REG_NOERROR;
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
re_string_skip_bytes (regexp, token_len); /* Skip a token. */
|
||
if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS
|
||
|| token->type == OP_OPEN_EQUIV_CLASS)
|
||
return parse_bracket_symbol (elem, regexp, token);
|
||
elem->type = SB_CHAR;
|
||
elem->opr.ch = token->opr.c;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Parse a bracket symbol in the bracket expression. Bracket symbols are
|
||
such as [:<character_class>:], [.<collating_element>.], and
|
||
[=<equivalent_class>=]. */
|
||
|
||
static reg_errcode_t
|
||
parse_bracket_symbol (elem, regexp, token)
|
||
bracket_elem_t *elem;
|
||
re_string_t *regexp;
|
||
re_token_t *token;
|
||
{
|
||
unsigned char ch, delim = token->opr.c;
|
||
int i = 0;
|
||
for (;; ++i)
|
||
{
|
||
if (re_string_eoi(regexp) || i >= BRACKET_NAME_BUF_SIZE)
|
||
return REG_EBRACK;
|
||
if (token->type == OP_OPEN_CHAR_CLASS)
|
||
ch = re_string_fetch_byte_case (regexp);
|
||
else
|
||
ch = re_string_fetch_byte (regexp);
|
||
if (ch == delim && re_string_peek_byte (regexp, 0) == ']')
|
||
break;
|
||
elem->opr.name[i] = ch;
|
||
}
|
||
re_string_skip_bytes (regexp, 1);
|
||
elem->opr.name[i] = '\0';
|
||
switch (token->type)
|
||
{
|
||
case OP_OPEN_COLL_ELEM:
|
||
elem->type = COLL_SYM;
|
||
break;
|
||
case OP_OPEN_EQUIV_CLASS:
|
||
elem->type = EQUIV_CLASS;
|
||
break;
|
||
case OP_OPEN_CHAR_CLASS:
|
||
elem->type = CHAR_CLASS;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Helper function for parse_bracket_exp.
|
||
Build the equivalence class which is represented by NAME.
|
||
The result are written to MBCSET and SBCSET.
|
||
EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes,
|
||
is a pointer argument sinse we may update it. */
|
||
|
||
static reg_errcode_t
|
||
build_equiv_class (mbcset, sbcset, equiv_class_alloc, name)
|
||
re_charset_t *mbcset;
|
||
re_bitset_ptr_t sbcset;
|
||
int *equiv_class_alloc;
|
||
const unsigned char *name;
|
||
{
|
||
#ifdef _LIBC
|
||
uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
|
||
if (nrules != 0)
|
||
{
|
||
const int32_t *table, *indirect;
|
||
const unsigned char *weights, *extra, *cp;
|
||
unsigned char char_buf[2];
|
||
int32_t idx1, idx2;
|
||
unsigned int ch;
|
||
size_t len;
|
||
/* This #include defines a local function! */
|
||
# include <locale/weight.h>
|
||
/* Calculate the index for equivalence class. */
|
||
cp = name;
|
||
table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
|
||
weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
|
||
_NL_COLLATE_WEIGHTMB);
|
||
extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
|
||
_NL_COLLATE_EXTRAMB);
|
||
indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE,
|
||
_NL_COLLATE_INDIRECTMB);
|
||
idx1 = findidx (&cp);
|
||
if (BE (idx1 == 0 || cp < name + strlen (name), 0))
|
||
/* This isn't a valid character. */
|
||
return REG_ECOLLATE;
|
||
|
||
/* Build single byte matcing table for this equivalence class. */
|
||
char_buf[1] = '\0';
|
||
len = weights[idx1];
|
||
for (ch = 0; ch < SBC_MAX; ++ch)
|
||
{
|
||
char_buf[0] = ch;
|
||
cp = char_buf;
|
||
idx2 = findidx (&cp);
|
||
/*
|
||
idx2 = table[ch];
|
||
*/
|
||
if (idx2 == 0)
|
||
/* This isn't a valid character. */
|
||
continue;
|
||
if (len == weights[idx2])
|
||
{
|
||
int cnt = 0;
|
||
while (cnt <= len &&
|
||
weights[idx1 + 1 + cnt] == weights[idx2 + 1 + cnt])
|
||
++cnt;
|
||
|
||
if (cnt > len)
|
||
bitset_set (sbcset, ch);
|
||
}
|
||
}
|
||
/* Check whether the array has enough space. */
|
||
if (*equiv_class_alloc == mbcset->nequiv_classes)
|
||
{
|
||
/* Not enough, realloc it. */
|
||
/* +1 in case of mbcset->nequiv_classes is 0. */
|
||
*equiv_class_alloc = 2 * mbcset->nequiv_classes + 1;
|
||
/* Use realloc since the array is NULL if *alloc == 0. */
|
||
mbcset->equiv_classes = re_realloc (mbcset->equiv_classes, int32_t,
|
||
*equiv_class_alloc);
|
||
if (BE (mbcset->equiv_classes == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
if (BE (strlen (name) != 1, 0))
|
||
return REG_ECOLLATE;
|
||
bitset_set (sbcset, name[0]);
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Helper function for parse_bracket_exp.
|
||
Build the character class which is represented by NAME.
|
||
The result are written to MBCSET and SBCSET.
|
||
CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes,
|
||
is a pointer argument sinse we may update it. */
|
||
|
||
static reg_errcode_t
|
||
build_charclass (mbcset, sbcset, char_class_alloc, class_name, syntax)
|
||
re_charset_t *mbcset;
|
||
re_bitset_ptr_t sbcset;
|
||
int *char_class_alloc;
|
||
const unsigned char *class_name;
|
||
reg_syntax_t syntax;
|
||
{
|
||
int i;
|
||
const unsigned char *name = class_name;
|
||
/* Check the space of the arrays. */
|
||
if (*char_class_alloc == mbcset->nchar_classes)
|
||
{
|
||
/* Not enough, realloc it. */
|
||
/* +1 in case of mbcset->nchar_classes is 0. */
|
||
*char_class_alloc = 2 * mbcset->nchar_classes + 1;
|
||
/* Use realloc since array is NULL if *alloc == 0. */
|
||
mbcset->char_classes = re_realloc (mbcset->char_classes, wctype_t,
|
||
*char_class_alloc);
|
||
if (BE (mbcset->char_classes == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
|
||
/* In case of REG_ICASE "upper" and "lower" match the both of
|
||
upper and lower cases. */
|
||
if ((syntax & RE_ICASE)
|
||
&& (strcmp (name, "upper") == 0 || strcmp (name, "lower") == 0))
|
||
name = "alpha";
|
||
|
||
mbcset->char_classes[mbcset->nchar_classes++] = __wctype (name);
|
||
|
||
#define BUILD_CHARCLASS_LOOP(ctype_func)\
|
||
for (i = 0; i < SBC_MAX; ++i) \
|
||
{ \
|
||
if (ctype_func (i)) \
|
||
bitset_set (sbcset, i); \
|
||
}
|
||
|
||
if (strcmp (name, "alnum") == 0)
|
||
BUILD_CHARCLASS_LOOP (isalnum)
|
||
else if (strcmp (name, "cntrl") == 0)
|
||
BUILD_CHARCLASS_LOOP (iscntrl)
|
||
else if (strcmp (name, "lower") == 0)
|
||
BUILD_CHARCLASS_LOOP (islower)
|
||
else if (strcmp (name, "space") == 0)
|
||
BUILD_CHARCLASS_LOOP (isspace)
|
||
else if (strcmp (name, "alpha") == 0)
|
||
BUILD_CHARCLASS_LOOP (isalpha)
|
||
else if (strcmp (name, "digit") == 0)
|
||
BUILD_CHARCLASS_LOOP (isdigit)
|
||
else if (strcmp (name, "print") == 0)
|
||
BUILD_CHARCLASS_LOOP (isprint)
|
||
else if (strcmp (name, "upper") == 0)
|
||
BUILD_CHARCLASS_LOOP (isupper)
|
||
else if (strcmp (name, "blank") == 0)
|
||
BUILD_CHARCLASS_LOOP (isblank)
|
||
else if (strcmp (name, "graph") == 0)
|
||
BUILD_CHARCLASS_LOOP (isgraph)
|
||
else if (strcmp (name, "punct") == 0)
|
||
BUILD_CHARCLASS_LOOP (ispunct)
|
||
else if (strcmp (name, "xdigit") == 0)
|
||
BUILD_CHARCLASS_LOOP (isxdigit)
|
||
else
|
||
return REG_ECTYPE;
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static bin_tree_t *
|
||
build_word_op (dfa, not, err)
|
||
re_dfa_t *dfa;
|
||
int not;
|
||
reg_errcode_t *err;
|
||
{
|
||
re_bitset_ptr_t sbcset;
|
||
re_charset_t *mbcset;
|
||
reg_errcode_t ret;
|
||
re_token_t br_token;
|
||
bin_tree_t *tree;
|
||
int new_idx, alloc = 0;
|
||
|
||
sbcset = (re_bitset_ptr_t) calloc (sizeof (unsigned int), BITSET_UINTS);
|
||
mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
|
||
if (BE (sbcset == NULL || mbcset == NULL, 0))
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
|
||
if (not)
|
||
{
|
||
int i;
|
||
mbcset->non_match = 1;
|
||
/*
|
||
if (syntax & RE_HAT_LISTS_NOT_NEWLINE)
|
||
bitset_set(cset->sbcset, '\0');
|
||
*/
|
||
#ifdef RE_ENABLE_I18N
|
||
if (MB_CUR_MAX > 1)
|
||
for (i = 0; i < SBC_MAX; ++i)
|
||
if (__btowc (i) == WEOF)
|
||
bitset_set (sbcset, i);
|
||
#endif /* RE_ENABLE_I18N */
|
||
}
|
||
|
||
/* We don't care the syntax in this case. */
|
||
ret = build_charclass (mbcset, sbcset, &alloc, "alpha", 0);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
{
|
||
re_free (sbcset);
|
||
free_charset (mbcset);
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
/* \w match '_' also. */
|
||
bitset_set (sbcset, '_');
|
||
|
||
/* If it is non-matching list. */
|
||
if (mbcset->non_match)
|
||
bitset_not (sbcset);
|
||
|
||
/* Build a tree for simple bracket. */
|
||
br_token.type = SIMPLE_BRACKET;
|
||
br_token.opr.sbcset = sbcset;
|
||
new_idx = re_dfa_add_node (dfa, br_token, 0);
|
||
tree = create_tree (NULL, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || tree == NULL, 0))
|
||
goto build_word_op_espace;
|
||
|
||
if (MB_CUR_MAX > 1)
|
||
{
|
||
re_token_t alt_token;
|
||
bin_tree_t *mbc_tree;
|
||
/* Build a tree for complex bracket. */
|
||
br_token.type = COMPLEX_BRACKET;
|
||
br_token.opr.mbcset = mbcset;
|
||
dfa->has_mb_node = 1;
|
||
new_idx = re_dfa_add_node (dfa, br_token, 0);
|
||
mbc_tree = create_tree (NULL, NULL, 0, new_idx);
|
||
if (BE (new_idx == -1 || mbc_tree == NULL, 0))
|
||
goto build_word_op_espace;
|
||
/* Then join them by ALT node. */
|
||
alt_token.type = OP_ALT;
|
||
new_idx = re_dfa_add_node (dfa, alt_token, 0);
|
||
tree = create_tree (tree, mbc_tree, 0, new_idx);
|
||
if (BE (new_idx != -1 && mbc_tree != NULL, 1))
|
||
return tree;
|
||
}
|
||
else
|
||
{
|
||
free_charset (mbcset);
|
||
return tree;
|
||
}
|
||
build_word_op_espace:
|
||
re_free (sbcset);
|
||
free_charset (mbcset);
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
|
||
/* This is intended for the expressions like "a{1,3}".
|
||
Fetch a number from `input', and return the number.
|
||
Return -1, if the number field is empty like "{,1}".
|
||
Return -2, If an error is occured. */
|
||
|
||
static int
|
||
fetch_number (input, token, syntax)
|
||
re_string_t *input;
|
||
re_token_t *token;
|
||
reg_syntax_t syntax;
|
||
{
|
||
int num = -1;
|
||
unsigned char c;
|
||
while (1)
|
||
{
|
||
*token = fetch_token (input, syntax);
|
||
c = token->opr.c;
|
||
if (BE (token->type == END_OF_RE, 0))
|
||
return -2;
|
||
if (token->type == OP_CLOSE_DUP_NUM || c == ',')
|
||
break;
|
||
num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2)
|
||
? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0'));
|
||
num = (num > RE_DUP_MAX) ? -2 : num;
|
||
}
|
||
return num;
|
||
}
|
||
|
||
static void
|
||
free_charset (re_charset_t *cset)
|
||
{
|
||
re_free (cset->mbchars);
|
||
#ifdef _LIBC
|
||
re_free (cset->coll_syms);
|
||
re_free (cset->equiv_classes);
|
||
re_free (cset->range_starts);
|
||
re_free (cset->range_ends);
|
||
#endif
|
||
re_free (cset->char_classes);
|
||
re_free (cset);
|
||
}
|
||
|
||
/* Functions for binary tree operation. */
|
||
|
||
/* Create a node of tree.
|
||
Note: This function automatically free left and right if malloc fails. */
|
||
|
||
static bin_tree_t *
|
||
create_tree (left, right, type, index)
|
||
bin_tree_t *left;
|
||
bin_tree_t *right;
|
||
re_token_type_t type;
|
||
int index;
|
||
{
|
||
bin_tree_t *tree;
|
||
tree = re_malloc (bin_tree_t, 1);
|
||
if (BE (tree == NULL, 0))
|
||
{
|
||
free_bin_tree (left);
|
||
free_bin_tree (right);
|
||
return NULL;
|
||
}
|
||
tree->parent = NULL;
|
||
tree->left = left;
|
||
tree->right = right;
|
||
tree->type = type;
|
||
tree->node_idx = index;
|
||
tree->first = -1;
|
||
tree->next = -1;
|
||
re_node_set_init_empty (&tree->eclosure);
|
||
|
||
if (left != NULL)
|
||
left->parent = tree;
|
||
if (right != NULL)
|
||
right->parent = tree;
|
||
return tree;
|
||
}
|
||
|
||
/* Free the sub tree pointed by TREE. */
|
||
|
||
static void
|
||
free_bin_tree (tree)
|
||
bin_tree_t *tree;
|
||
{
|
||
if (tree == NULL)
|
||
return;
|
||
/*re_node_set_free (&tree->eclosure);*/
|
||
free_bin_tree (tree->left);
|
||
free_bin_tree (tree->right);
|
||
re_free (tree);
|
||
}
|
||
|
||
/* Duplicate the node SRC, and return new node. */
|
||
|
||
static bin_tree_t *
|
||
duplicate_tree (src, dfa)
|
||
const bin_tree_t *src;
|
||
re_dfa_t *dfa;
|
||
{
|
||
bin_tree_t *left = NULL, *right = NULL, *new_tree;
|
||
int new_node_idx;
|
||
/* Since node indies must be according to Post-order of the tree,
|
||
we must duplicate the left at first. */
|
||
if (src->left != NULL)
|
||
{
|
||
left = duplicate_tree (src->left, dfa);
|
||
if (left == NULL)
|
||
return NULL;
|
||
}
|
||
|
||
/* Secondaly, duplicate the right. */
|
||
if (src->right != NULL)
|
||
{
|
||
right = duplicate_tree (src->right, dfa);
|
||
if (right == NULL)
|
||
{
|
||
free_bin_tree (left);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* At last, duplicate itself. */
|
||
if (src->type == NON_TYPE)
|
||
{
|
||
new_node_idx = re_dfa_add_node (dfa, dfa->nodes[src->node_idx], 0);
|
||
dfa->nodes[new_node_idx].duplicated = 1;
|
||
if (BE (new_node_idx == -1, 0))
|
||
{
|
||
free_bin_tree (left);
|
||
free_bin_tree (right);
|
||
return NULL;
|
||
}
|
||
}
|
||
else
|
||
new_node_idx = src->type;
|
||
|
||
new_tree = create_tree (left, right, src->type, new_node_idx);
|
||
if (BE (new_tree == NULL, 0))
|
||
{
|
||
free_bin_tree (left);
|
||
free_bin_tree (right);
|
||
}
|
||
return new_tree;
|
||
}
|