Joseph Myers 909f8e14db Fix ldbl-128ibm strtold overflow handling (bug 14551).
For ldbl-128ibm, if the result of strtold overflows in the final
conversion from MPN to IBM long double (because the exponent for a
106-bit IEEE result is 1023 but the high part would end up as
0x1p1024, which overflows), that conversion code fails to handle this
and produces an invalid long double value (high part infinite, low
part not zero) without raising exceptions or setting errno.  This
patch adds an explicit check for this case to ensure an appropriate
result is returned in a way that ensures the right exceptions are
raised, with errno set.

Tested for powerpc.

	[BZ #14551]
	* sysdeps/ieee754/ldbl-128ibm/mpn2ldbl.c: Include <errno.h>.
	(__mpn_construct_long_double): If high part overflows to infinity,
	set errno and recompute overflowed result of the correct sign.
	* sysdeps/ieee754/ldbl-128ibm/Makefile
	[$(subdir) = stdlib] (tests): Add tst-strtold-ldbl-128ibm.
	[$(subdir) = stdlib] ($(objpfx)tst-strtold-ldbl-128ibm): Depend on
	$(libm).
	* sysdeps/ieee754/ldbl-128ibm/tst-strtold-ldbl-128ibm.c: New file.
2015-11-13 12:03:46 +00:00

158 lines
4.6 KiB
C

/* Copyright (C) 1995-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "gmp.h"
#include "gmp-impl.h"
#include <ieee754.h>
#include <errno.h>
#include <float.h>
#include <math.h>
/* Convert a multi-precision integer of the needed number of bits (106
for long double) and an integral power of two to a `long double' in
IBM extended format. */
long double
__mpn_construct_long_double (mp_srcptr frac_ptr, int expt, int sign)
{
union ibm_extended_long_double u;
unsigned long lzcount;
unsigned long long hi, lo;
int exponent2;
u.d[0].ieee.negative = sign;
u.d[1].ieee.negative = sign;
u.d[0].ieee.exponent = expt + IEEE754_DOUBLE_BIAS;
u.d[1].ieee.exponent = 0;
exponent2 = expt - 53 + IEEE754_DOUBLE_BIAS;
#if BITS_PER_MP_LIMB == 32
/* The low order 53 bits (52 + hidden) go into the lower double */
lo = frac_ptr[0];
lo |= (frac_ptr[1] & ((1LL << (53 - 32)) - 1)) << 32;
/* The high order 53 bits (52 + hidden) go into the upper double */
hi = (frac_ptr[1] >> (53 - 32)) & ((1 << 11) - 1);
hi |= ((unsigned long long) frac_ptr[2]) << 11;
hi |= ((unsigned long long) frac_ptr[3]) << (32 + 11);
#elif BITS_PER_MP_LIMB == 64
/* The low order 53 bits (52 + hidden) go into the lower double */
lo = frac_ptr[0] & (((mp_limb_t) 1 << 53) - 1);
/* The high order 53 bits (52 + hidden) go into the upper double */
hi = (frac_ptr[0] >> 53) & (((mp_limb_t) 1 << 11) - 1);
hi |= (frac_ptr[1] << 11);
#else
#error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
#endif
if ((hi & (1LL << 52)) == 0 && (hi | lo) != 0)
{
/* denormal number */
unsigned long long val = hi ? hi : lo;
if (sizeof (val) == sizeof (long))
lzcount = __builtin_clzl (val);
else if ((val >> 32) != 0)
lzcount = __builtin_clzl ((long) (val >> 32));
else
lzcount = __builtin_clzl ((long) val) + 32;
if (hi)
lzcount = lzcount - (64 - 53);
else
lzcount = lzcount + 53 - (64 - 53);
if (lzcount > u.d[0].ieee.exponent)
{
lzcount = u.d[0].ieee.exponent;
u.d[0].ieee.exponent = 0;
exponent2 -= lzcount;
}
else
{
u.d[0].ieee.exponent -= (lzcount - 1);
exponent2 -= (lzcount - 1);
}
if (lzcount <= 53)
{
hi = (hi << lzcount) | (lo >> (53 - lzcount));
lo = (lo << lzcount) & ((1LL << 53) - 1);
}
else
{
hi = lo << (lzcount - 53);
lo = 0;
}
}
if (lo != 0)
{
/* hidden bit of low double controls rounding of the high double.
If hidden is '1' and either the explicit mantissa is non-zero
or hi is odd, then round up hi and adjust lo (2nd mantissa)
plus change the sign of the low double to compensate. */
if ((lo & (1LL << 52)) != 0
&& ((hi & 1) != 0 || (lo & ((1LL << 52) - 1)) != 0))
{
hi++;
if ((hi & (1LL << 53)) != 0)
{
hi >>= 1;
u.d[0].ieee.exponent++;
if (u.d[0].ieee.exponent == IEEE754_DOUBLE_BIAS + DBL_MAX_EXP)
{
/* Overflow. The appropriate overflowed result must
be produced (if an infinity, that means the low
part must be zero). */
__set_errno (ERANGE);
return (sign ? -LDBL_MAX : LDBL_MAX) * LDBL_MAX;
}
}
u.d[1].ieee.negative = !sign;
lo = (1LL << 53) - lo;
}
/* Normalize the low double. Shift the mantissa left until
the hidden bit is '1' and adjust the exponent accordingly. */
if (sizeof (lo) == sizeof (long))
lzcount = __builtin_clzl (lo);
else if ((lo >> 32) != 0)
lzcount = __builtin_clzl ((long) (lo >> 32));
else
lzcount = __builtin_clzl ((long) lo) + 32;
lzcount = lzcount - (64 - 53);
lo <<= lzcount;
exponent2 -= lzcount;
if (exponent2 > 0)
u.d[1].ieee.exponent = exponent2;
else if (exponent2 > -53)
lo >>= 1 - exponent2;
else
lo = 0;
}
else
u.d[1].ieee.negative = 0;
u.d[1].ieee.mantissa1 = lo;
u.d[1].ieee.mantissa0 = lo >> 32;
u.d[0].ieee.mantissa1 = hi;
u.d[0].ieee.mantissa0 = hi >> 32;
return u.ld;
}