Ulrich Drepper ca58f1dbeb Update.
2001-03-12  Ulrich Drepper  <drepper@redhat.com>

	* sysdeps/ieee754/dbl-64/e_remainder.c: Fix handling of boundary
	conditions.

	* sysdeps/ieee754/dbl-64/e_pow.c: Fix handling of boundary
	conditions.

	* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Handle Inf and NaN
	correctly.
	(__cos): Likewise.

	* sysdeps/ieee754/dbl-64/e_asin.c (__ieee754_asin): Handle NaN
	correctly.
	(__ieee754_acos): Likewise.

	redefinition.
	* sysdeps/ieee754/dbl-64/endian.h: Define also one of BIG_ENDI and
	LITTLE_ENDI.

	* sysdeps/ieee754/dbl-64/MathLib.h (Init_Lib): Use void as
	parameter list.
2001-03-13 02:01:34 +00:00

79 lines
4.0 KiB
C

/*
* IBM Accurate Mathematical Library
* Copyright (c) International Business Machines Corp., 2001
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/************************************************************************/
/* MODULE_NAME: mpa.h */
/* */
/* FUNCTIONS: */
/* mcr */
/* acr */
/* cr */
/* cpy */
/* cpymn */
/* mp_dbl */
/* dbl_mp */
/* add */
/* sub */
/* mul */
/* inv */
/* dvd */
/* */
/* Arithmetic functions for multiple precision numbers. */
/* Common types and definition */
/************************************************************************/
typedef struct {/* This structure holds the details of a multi-precision */
int e; /* floating point number, x: d[0] holds its sign (-1,0 or 1) */
double d[40]; /* e holds its exponent (...,-2,-1,0,1,2,...) and */
} mp_no; /* d[1]...d[p] hold its mantissa digits. The value of x is, */
/* x = d[1]*r**(e-1) + d[2]*r**(e-2) + ... + d[p]*r**(e-p). */
/* Here r = 2**24, 0 <= d[i] < r and 1 <= p <= 32. */
/* p is a global variable. A multi-precision number is */
/* always normalized. Namely, d[1] > 0. An exception is */
/* a zero which is characterized by d[0] = 0. The terms */
/* d[p+1], d[p+2], ... of a none zero number have no */
/* significance and so are the terms e, d[1],d[2],... */
/* of a zero. */
typedef union { int i[2]; double d; } number;
#define X x->d
#define Y y->d
#define Z z->d
#define EX x->e
#define EY y->e
#define EZ z->e
#define MAX(x,y) ((x) < (y) ? (y) : (x))
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#define ABS(x) ((x) < 0 ? -(x) : (x))
int __acr(const mp_no *, const mp_no *, int);
int __cr(const mp_no *, const mp_no *, int);
void __cpy(const mp_no *, mp_no *, int);
void __cpymn(const mp_no *, int, mp_no *, int);
void __mp_dbl(const mp_no *, double *, int);
void __dbl_mp(double, mp_no *, int);
void __add(const mp_no *, const mp_no *, mp_no *, int);
void __sub(const mp_no *, const mp_no *, mp_no *, int);
void __mul(const mp_no *, const mp_no *, mp_no *, int);
void __inv(const mp_no *, mp_no *, int);
void __dvd(const mp_no *, const mp_no *, mp_no *, int);