Joseph Myers 0b7a5f9201 Fix log1p missing underflows (bug 16339).
Similar to various other bugs in this area, some log1p implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact.  This patch forces the exception in a
similar way to previous fixes.  (The ldbl-128ibm implementation
doesn't currently need any change as it already generates this
exception, albeit through code that would generate spurious exceptions
in other cases; special code for this issue will only be needed there
when fixing the spurious exceptions.)

Tested for x86_64, x86, powerpc and mips64.

	[BZ #16339]
	* sysdeps/i386/fpu/s_log1p.S (dbl_min): New object.
	(__log1p): Force underflow exception for results with small
	absolute value.
	* sysdeps/i386/fpu/s_log1pf.S (flt_min): New object.
	(__log1pf): Force underflow exception for results with small
	absolute value.
	* sysdeps/ieee754/dbl-64/s_log1p.c: Include <float.h>.
	(__log1p): Force underflow exception for results with small
	absolute value.
	* sysdeps/ieee754/flt-32/s_log1pf.c: Include <float.h>.
	(__log1pf): Force underflow exception for results with small
	absolute value.
	* sysdeps/ieee754/ldbl-128/s_log1pl.c: Include <float.h>.
	(__log1pl): Force underflow exception for results with small
	absolute value.
	* math/auto-libm-test-in: Do not allow missing underflow
	exceptions from log1p.
	* math/auto-libm-test-out: Regenerated.
2015-05-14 23:38:07 +00:00

262 lines
6.7 KiB
C

/* log1pl.c
*
* Relative error logarithm
* Natural logarithm of 1+x, 128-bit long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, log1pl();
*
* y = log1pl( x );
*
*
*
* DESCRIPTION:
*
* Returns the base e (2.718...) logarithm of 1+x.
*
* The argument 1+x is separated into its exponent and fractional
* parts. If the exponent is between -1 and +1, the logarithm
* of the fraction is approximated by
*
* log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
*
* Otherwise, setting z = 2(w-1)/(w+1),
*
* log(w) = z + z^3 P(z)/Q(z).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -1, 8 100000 1.9e-34 4.3e-35
*/
/* Copyright 2001 by Stephen L. Moshier
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
#include <float.h>
#include <math.h>
#include <math_private.h>
/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
* 1/sqrt(2) <= 1+x < sqrt(2)
* Theoretical peak relative error = 5.3e-37,
* relative peak error spread = 2.3e-14
*/
static const long double
P12 = 1.538612243596254322971797716843006400388E-6L,
P11 = 4.998469661968096229986658302195402690910E-1L,
P10 = 2.321125933898420063925789532045674660756E1L,
P9 = 4.114517881637811823002128927449878962058E2L,
P8 = 3.824952356185897735160588078446136783779E3L,
P7 = 2.128857716871515081352991964243375186031E4L,
P6 = 7.594356839258970405033155585486712125861E4L,
P5 = 1.797628303815655343403735250238293741397E5L,
P4 = 2.854829159639697837788887080758954924001E5L,
P3 = 3.007007295140399532324943111654767187848E5L,
P2 = 2.014652742082537582487669938141683759923E5L,
P1 = 7.771154681358524243729929227226708890930E4L,
P0 = 1.313572404063446165910279910527789794488E4L,
/* Q12 = 1.000000000000000000000000000000000000000E0L, */
Q11 = 4.839208193348159620282142911143429644326E1L,
Q10 = 9.104928120962988414618126155557301584078E2L,
Q9 = 9.147150349299596453976674231612674085381E3L,
Q8 = 5.605842085972455027590989944010492125825E4L,
Q7 = 2.248234257620569139969141618556349415120E5L,
Q6 = 6.132189329546557743179177159925690841200E5L,
Q5 = 1.158019977462989115839826904108208787040E6L,
Q4 = 1.514882452993549494932585972882995548426E6L,
Q3 = 1.347518538384329112529391120390701166528E6L,
Q2 = 7.777690340007566932935753241556479363645E5L,
Q1 = 2.626900195321832660448791748036714883242E5L,
Q0 = 3.940717212190338497730839731583397586124E4L;
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
* where z = 2(x-1)/(x+1)
* 1/sqrt(2) <= x < sqrt(2)
* Theoretical peak relative error = 1.1e-35,
* relative peak error spread 1.1e-9
*/
static const long double
R5 = -8.828896441624934385266096344596648080902E-1L,
R4 = 8.057002716646055371965756206836056074715E1L,
R3 = -2.024301798136027039250415126250455056397E3L,
R2 = 2.048819892795278657810231591630928516206E4L,
R1 = -8.977257995689735303686582344659576526998E4L,
R0 = 1.418134209872192732479751274970992665513E5L,
/* S6 = 1.000000000000000000000000000000000000000E0L, */
S5 = -1.186359407982897997337150403816839480438E2L,
S4 = 3.998526750980007367835804959888064681098E3L,
S3 = -5.748542087379434595104154610899551484314E4L,
S2 = 4.001557694070773974936904547424676279307E5L,
S1 = -1.332535117259762928288745111081235577029E6L,
S0 = 1.701761051846631278975701529965589676574E6L;
/* C1 + C2 = ln 2 */
static const long double C1 = 6.93145751953125E-1L;
static const long double C2 = 1.428606820309417232121458176568075500134E-6L;
static const long double sqrth = 0.7071067811865475244008443621048490392848L;
/* ln (2^16384 * (1 - 2^-113)) */
static const long double maxlog = 1.1356523406294143949491931077970764891253E4L;
static const long double zero = 0.0L;
long double
__log1pl (long double xm1)
{
long double x, y, z, r, s;
ieee854_long_double_shape_type u;
int32_t hx;
int e;
/* Test for NaN or infinity input. */
u.value = xm1;
hx = u.parts32.w0;
if (hx >= 0x7fff0000)
return xm1;
/* log1p(+- 0) = +- 0. */
if (((hx & 0x7fffffff) == 0)
&& (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)
return xm1;
if ((hx & 0x7fffffff) < 0x3f8e0000)
{
if (fabsl (xm1) < LDBL_MIN)
{
long double force_underflow = xm1 * xm1;
math_force_eval (force_underflow);
}
if ((int) xm1 == 0)
return xm1;
}
if (xm1 >= 0x1p113L)
x = xm1;
else
x = xm1 + 1.0L;
/* log1p(-1) = -inf */
if (x <= 0.0L)
{
if (x == 0.0L)
return (-1.0L / zero); /* log1p(-1) = -inf */
else
return (zero / (x - x));
}
/* Separate mantissa from exponent. */
/* Use frexp used so that denormal numbers will be handled properly. */
x = __frexpl (x, &e);
/* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
where z = 2(x-1)/x+1). */
if ((e > 2) || (e < -2))
{
if (x < sqrth)
{ /* 2( 2x-1 )/( 2x+1 ) */
e -= 1;
z = x - 0.5L;
y = 0.5L * z + 0.5L;
}
else
{ /* 2 (x-1)/(x+1) */
z = x - 0.5L;
z -= 0.5L;
y = 0.5L * x + 0.5L;
}
x = z / y;
z = x * x;
r = ((((R5 * z
+ R4) * z
+ R3) * z
+ R2) * z
+ R1) * z
+ R0;
s = (((((z
+ S5) * z
+ S4) * z
+ S3) * z
+ S2) * z
+ S1) * z
+ S0;
z = x * (z * r / s);
z = z + e * C2;
z = z + x;
z = z + e * C1;
return (z);
}
/* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
if (x < sqrth)
{
e -= 1;
if (e != 0)
x = 2.0L * x - 1.0L; /* 2x - 1 */
else
x = xm1;
}
else
{
if (e != 0)
x = x - 1.0L;
else
x = xm1;
}
z = x * x;
r = (((((((((((P12 * x
+ P11) * x
+ P10) * x
+ P9) * x
+ P8) * x
+ P7) * x
+ P6) * x
+ P5) * x
+ P4) * x
+ P3) * x
+ P2) * x
+ P1) * x
+ P0;
s = (((((((((((x
+ Q11) * x
+ Q10) * x
+ Q9) * x
+ Q8) * x
+ Q7) * x
+ Q6) * x
+ Q5) * x
+ Q4) * x
+ Q3) * x
+ Q2) * x
+ Q1) * x
+ Q0;
y = x * (z * r / s);
y = y + e * C2;
z = y - 0.5L * z;
z = z + x;
z = z + e * C1;
return (z);
}