glibc/math/test-tgmath.c
Joseph Myers 525f803984 Add fmaxmag, fminmag functions.
TS 18661-1 defines fmaxmag and fminmag functions that return the
argument with maximum / minimum magnitude (acting like fmax / fmin if
the arguments have the same magnitude or either argument is a NaN).
These correspond to the IEEE 754-2008 operations maxNumMag and
minNumMag.  This patch implements these functions for glibc.  They are
implemented with type-generic templates.  Tests are based on those for
fmax and fmin.

Tested for x86_64, x86, mips64 and powerpc.

	* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
	(fmaxmag): New declaration.
	(fminmag): Likewise.
	* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (fmaxmag): New
	macro.
	[__GLIBC_USE (IEC_60559_BFP_EXT)] (fminmag): Likewise.
	* math/Versions (fmaxmag): New libm symbol at version GLIBC_2.25.
	(fmaxmagf): Likewise.
	(fmaxmagl): Likewise.
	(fminmag): Likewise.
	(fminmagf): Likewise.
	(fminmagl): Likewise.
	* math/Makefile (gen-libm-calls): Add s_fmaxmagF and s_fminmagF.
	* math/s_fmaxmag_template.c: New file.
	* math/s_fminmag_template.c: Likewise.
	* math/libm-test.inc (fmaxmag_test_data): New array.
	(fmaxmag_test): New function.
	(fminmag_test_data): New array.
	(fminmag_test): New function.
	(main): Call fmaxmag_test and fminmag_test.
	* math/test-tgmath.c (NCALLS): Increase to 132.
	(F(compile_test)): Call fmaxmag and fminmag.
	(F(fminmag)): New function.
	(F(fmaxmag)): Likewise.
	* manual/arith.texi (Misc FP Arithmetic): Document fminmag,
	fminmagf, fminmagl, fmaxmag, fmaxmagf and fmaxmagl.
	* manual/libm-err-tab.pl (@all_functions): Add fmaxmag and
	fminmag.
	* sysdeps/ieee754/ldbl-opt/nldbl-fmaxmag.c: New file.
	* sysdeps/ieee754/ldbl-opt/nldbl-fminmag.c: Likewise.
	* sysdeps/ieee754/ldbl-opt/s_fmaxmagl.c: Likewise.
	* sysdeps/ieee754/ldbl-opt/s_fminmagl.c: Likewise.
	* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fmaxmag
	and fminmag.
	(CFLAGS-nldbl-fmaxmag.c): New variable.
	(CFLAGS-nldbl-fminmag.c): Likewise.
	* sysdeps/nacl/libm.abilist: Update.
	* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
	Likewise.
	* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
	* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
2016-12-20 00:46:53 +00:00

1109 lines
16 KiB
C

/* Test compilation of tgmath macros.
Copyright (C) 2001-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jakub@redhat.com> and
Ulrich Drepper <drepper@redhat.com>, 2001.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#ifndef HAVE_MAIN
#undef __NO_MATH_INLINES
#define __NO_MATH_INLINES 1
#include <math.h>
#include <stdio.h>
#include <tgmath.h>
//#define DEBUG
static void compile_test (void);
static void compile_testf (void);
#ifndef NO_LONG_DOUBLE
static void compile_testl (void);
#endif
float fx;
double dx;
long double lx;
const float fy = 1.25;
const double dy = 1.25;
const long double ly = 1.25;
complex float fz;
complex double dz;
complex long double lz;
int count_double;
int count_float;
int count_ldouble;
int count_cdouble;
int count_cfloat;
int count_cldouble;
#define NCALLS 132
#define NCALLS_INT 4
#define NCCALLS 47
static int
do_test (void)
{
int result = 0;
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_test ();
if (count_float != 0 || count_cfloat != 0)
{
puts ("float function called for double test");
result = 1;
}
if (count_ldouble != 0 || count_cldouble != 0)
{
puts ("long double function called for double test");
result = 1;
}
if (count_double < NCALLS + NCALLS_INT)
{
printf ("double functions not called often enough (%d)\n",
count_double);
result = 1;
}
else if (count_double > NCALLS + NCALLS_INT)
{
printf ("double functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cdouble < NCCALLS)
{
printf ("double complex functions not called often enough (%d)\n",
count_cdouble);
result = 1;
}
else if (count_cdouble > NCCALLS)
{
printf ("double complex functions called too often (%d)\n",
count_cdouble);
result = 1;
}
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_testf ();
if (count_double != 0 || count_cdouble != 0)
{
puts ("double function called for float test");
result = 1;
}
if (count_ldouble != 0 || count_cldouble != 0)
{
puts ("long double function called for float test");
result = 1;
}
if (count_float < NCALLS)
{
printf ("float functions not called often enough (%d)\n", count_float);
result = 1;
}
else if (count_float > NCALLS)
{
printf ("float functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cfloat < NCCALLS)
{
printf ("float complex functions not called often enough (%d)\n",
count_cfloat);
result = 1;
}
else if (count_cfloat > NCCALLS)
{
printf ("float complex functions called too often (%d)\n",
count_cfloat);
result = 1;
}
#ifndef NO_LONG_DOUBLE
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_testl ();
if (count_float != 0 || count_cfloat != 0)
{
puts ("float function called for long double test");
result = 1;
}
if (count_double != 0 || count_cdouble != 0)
{
puts ("double function called for long double test");
result = 1;
}
if (count_ldouble < NCALLS)
{
printf ("long double functions not called often enough (%d)\n",
count_ldouble);
result = 1;
}
else if (count_ldouble > NCALLS)
{
printf ("long double functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cldouble < NCCALLS)
{
printf ("long double complex functions not called often enough (%d)\n",
count_cldouble);
result = 1;
}
else if (count_cldouble > NCCALLS)
{
printf ("long double complex functions called too often (%d)\n",
count_cldouble);
result = 1;
}
#endif
return result;
}
/* Now generate the three functions. */
#define HAVE_MAIN
#define F(name) name
#define TYPE double
#define TEST_INT 1
#define x dx
#define y dy
#define z dz
#define count count_double
#define ccount count_cdouble
#include "test-tgmath.c"
#define F(name) name##f
#define TYPE float
#define x fx
#define y fy
#define z fz
#define count count_float
#define ccount count_cfloat
#include "test-tgmath.c"
#ifndef NO_LONG_DOUBLE
#define F(name) name##l
#define TYPE long double
#define x lx
#define y ly
#define z lz
#define count count_ldouble
#define ccount count_cldouble
#include "test-tgmath.c"
#endif
#define TEST_FUNCTION do_test ()
#include "../test-skeleton.c"
#else
#ifdef DEBUG
#define P() puts (__FUNCTION__)
#else
#define P()
#endif
static void
F(compile_test) (void)
{
TYPE a, b, c = 1.0;
complex TYPE d;
int i;
int saved_count;
long int j;
long long int k;
a = cos (cos (x));
b = acos (acos (a));
a = sin (sin (x));
b = asin (asin (a));
a = tan (tan (x));
b = atan (atan (a));
c = atan2 (atan2 (a, c), atan2 (b, x));
a = cosh (cosh (x));
b = acosh (acosh (a));
a = sinh (sinh (x));
b = asinh (asinh (a));
a = tanh (tanh (x));
b = atanh (atanh (a));
a = exp (exp (x));
b = log (log (a));
a = log10 (log10 (x));
b = ldexp (ldexp (a, 1), 5);
a = frexp (frexp (x, &i), &i);
b = expm1 (expm1 (a));
a = log1p (log1p (x));
b = logb (logb (a));
a = exp2 (exp2 (x));
b = log2 (log2 (a));
a = pow (pow (x, a), pow (c, b));
b = sqrt (sqrt (a));
a = hypot (hypot (x, b), hypot (c, a));
b = cbrt (cbrt (a));
a = ceil (ceil (x));
b = fabs (fabs (a));
a = floor (floor (x));
b = fmod (fmod (a, b), fmod (c, x));
a = nearbyint (nearbyint (x));
b = round (round (a));
a = trunc (trunc (x));
b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
j = lrint (x) + lround (a);
k = llrint (b) + llround (c);
a = erf (erf (x));
b = erfc (erfc (a));
a = tgamma (tgamma (x));
b = lgamma (lgamma (a));
a = rint (rint (x));
b = nextafter (nextafter (a, b), nextafter (c, x));
a = nextdown (nextdown (a));
b = nexttoward (nexttoward (x, a), c);
a = nextup (nextup (a));
b = remainder (remainder (a, b), remainder (c, x));
a = scalb (scalb (x, a), (TYPE) (6));
k = scalbn (a, 7) + scalbln (c, 10l);
i = ilogb (x);
j = llogb (x);
a = fdim (fdim (x, a), fdim (c, b));
b = fmax (fmax (a, x), fmax (c, b));
a = fmin (fmin (x, a), fmin (c, b));
b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
a = fminmag (fminmag (x, a), fminmag (c, b));
b = fma (sin (a), sin (x), sin (c));
a = totalorder (totalorder (x, b), totalorder (c, x));
b = totalordermag (totalordermag (x, a), totalordermag (c, x));
#ifdef TEST_INT
a = atan2 (i, b);
b = remquo (i, a, &i);
c = fma (i, b, i);
a = pow (i, c);
#endif
x = a + b + c + i + j + k;
saved_count = count;
if (ccount != 0)
ccount = -10000;
d = cos (cos (z));
z = acos (acos (d));
d = sin (sin (z));
z = asin (asin (d));
d = tan (tan (z));
z = atan (atan (d));
d = cosh (cosh (z));
z = acosh (acosh (d));
d = sinh (sinh (z));
z = asinh (asinh (d));
d = tanh (tanh (z));
z = atanh (atanh (d));
d = exp (exp (z));
z = log (log (d));
d = sqrt (sqrt (z));
z = conj (conj (d));
d = fabs (conj (a));
z = pow (pow (a, d), pow (b, z));
d = cproj (cproj (z));
z += fabs (cproj (a));
a = carg (carg (z));
b = creal (creal (d));
c = cimag (cimag (z));
x += a + b + c + i + j + k;
z += d;
if (saved_count != count)
count = -10000;
if (0)
{
a = cos (y);
a = acos (y);
a = sin (y);
a = asin (y);
a = tan (y);
a = atan (y);
a = atan2 (y, y);
a = cosh (y);
a = acosh (y);
a = sinh (y);
a = asinh (y);
a = tanh (y);
a = atanh (y);
a = exp (y);
a = log (y);
a = log10 (y);
a = ldexp (y, 5);
a = frexp (y, &i);
a = expm1 (y);
a = log1p (y);
a = logb (y);
a = exp2 (y);
a = log2 (y);
a = pow (y, y);
a = sqrt (y);
a = hypot (y, y);
a = cbrt (y);
a = ceil (y);
a = fabs (y);
a = floor (y);
a = fmod (y, y);
a = nearbyint (y);
a = round (y);
a = trunc (y);
a = remquo (y, y, &i);
j = lrint (y) + lround (y);
k = llrint (y) + llround (y);
a = erf (y);
a = erfc (y);
a = tgamma (y);
a = lgamma (y);
a = rint (y);
a = nextafter (y, y);
a = nexttoward (y, y);
a = remainder (y, y);
a = scalb (y, (const TYPE) (6));
k = scalbn (y, 7) + scalbln (y, 10l);
i = ilogb (y);
j = llogb (y);
a = fdim (y, y);
a = fmax (y, y);
a = fmin (y, y);
a = fmaxmag (y, y);
a = fminmag (y, y);
a = fma (y, y, y);
a = totalorder (y, y);
a = totalordermag (y, y);
#ifdef TEST_INT
a = atan2 (i, y);
a = remquo (i, y, &i);
a = fma (i, y, i);
a = pow (i, y);
#endif
d = cos ((const complex TYPE) z);
d = acos ((const complex TYPE) z);
d = sin ((const complex TYPE) z);
d = asin ((const complex TYPE) z);
d = tan ((const complex TYPE) z);
d = atan ((const complex TYPE) z);
d = cosh ((const complex TYPE) z);
d = acosh ((const complex TYPE) z);
d = sinh ((const complex TYPE) z);
d = asinh ((const complex TYPE) z);
d = tanh ((const complex TYPE) z);
d = atanh ((const complex TYPE) z);
d = exp ((const complex TYPE) z);
d = log ((const complex TYPE) z);
d = sqrt ((const complex TYPE) z);
d = pow ((const complex TYPE) z, (const complex TYPE) z);
d = fabs ((const complex TYPE) z);
d = carg ((const complex TYPE) z);
d = creal ((const complex TYPE) z);
d = cimag ((const complex TYPE) z);
d = conj ((const complex TYPE) z);
d = cproj ((const complex TYPE) z);
}
}
#undef x
#undef y
#undef z
TYPE
(F(cos)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acos)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sin)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asin)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tan)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan2)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(cosh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acosh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sinh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asinh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tanh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atanh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log10)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(ldexp)) (TYPE x, int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(frexp)) (TYPE x, int *y)
{
++count;
P ();
return x + *y;
}
TYPE
(F(expm1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log1p)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(logb)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp2)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log2)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(pow)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(sqrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(hypot)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(cbrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(ceil)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fabs)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(floor)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fmod)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nearbyint)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(round)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(trunc)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(remquo)) (TYPE x, TYPE y, int *i)
{
++count;
P ();
return x + y + *i;
}
long int
(F(lrint)) (TYPE x)
{
++count;
P ();
return x;
}
long int
(F(lround)) (TYPE x)
{
++count;
P ();
return x;
}
long long int
(F(llrint)) (TYPE x)
{
++count;
P ();
return x;
}
long long int
(F(llround)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(erf)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(erfc)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tgamma)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(lgamma)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(rint)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(nextafter)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nextdown)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(nexttoward)) (TYPE x, long double y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nextup)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(remainder)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalb)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalbn)) (TYPE x, int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalbln)) (TYPE x, long int y)
{
++count;
P ();
return x + y;
}
int
(F(ilogb)) (TYPE x)
{
++count;
P ();
return x;
}
long int
(F(llogb)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fdim)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmin)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmax)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fminmag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmaxmag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fma)) (TYPE x, TYPE y, TYPE z)
{
++count;
P ();
return x + y + z;
}
int
(F(totalorder)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
int
(F(totalordermag)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
complex TYPE
(F(cacos)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(casin)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(catan)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ccos)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csin)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ctan)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cacosh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(casinh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(catanh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ccosh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csinh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ctanh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cexp)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(clog)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csqrt)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cpow)) (complex TYPE x, complex TYPE y)
{
++ccount;
P ();
return x + y;
}
TYPE
(F(cabs)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
TYPE
(F(carg)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
TYPE
(F(creal)) (complex TYPE x)
{
++ccount;
P ();
return __real__ x;
}
TYPE
(F(cimag)) (complex TYPE x)
{
++ccount;
P ();
return __imag__ x;
}
complex TYPE
(F(conj)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cproj)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
#undef F
#undef TYPE
#undef count
#undef ccount
#undef TEST_INT
#endif