glibc/sysdeps/ieee754/ldbl-128/e_gammal_r.c
Joseph Myers 46f74e1dee Fix tgamma missing underflows (bug 18951).
Similar to various other bugs in this area, tgamma functions can fail
to raise the underflow exception when the result is tiny and inexact
but one or more low bits of the intermediate result that is scaled
down are zero.  This patch forces the exception in a similar way to
previous fixes.

Tested for x86_64, x86, mips64 and powerpc.

	[BZ #18951]
	* sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r): Force
	underflow exception for small results.
	* sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r):
	Likewise.
	* math/auto-libm-test-in: Add more tests of tgamma.
	* math/auto-libm-test-out: Regenerated.
2015-09-17 15:51:54 +00:00

223 lines
6.4 KiB
C

/* Implementation of gamma function according to ISO C.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
Jakub Jelinek <jj@ultra.linux.cz, 1999.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <float.h>
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
approximation to gamma function. */
static const long double gamma_coeff[] =
{
0x1.5555555555555555555555555555p-4L,
-0xb.60b60b60b60b60b60b60b60b60b8p-12L,
0x3.4034034034034034034034034034p-12L,
-0x2.7027027027027027027027027028p-12L,
0x3.72a3c5631fe46ae1d4e700dca8f2p-12L,
-0x7.daac36664f1f207daac36664f1f4p-12L,
0x1.a41a41a41a41a41a41a41a41a41ap-8L,
-0x7.90a1b2c3d4e5f708192a3b4c5d7p-8L,
0x2.dfd2c703c0cfff430edfd2c703cp-4L,
-0x1.6476701181f39edbdb9ce625987dp+0L,
0xd.672219167002d3a7a9c886459cp+0L,
-0x9.cd9292e6660d55b3f712eb9e07c8p+4L,
0x8.911a740da740da740da740da741p+8L,
-0x8.d0cc570e255bf59ff6eec24b49p+12L,
};
#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
/* Return gamma (X), for positive X less than 1775, in the form R *
2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
avoid overflow or underflow in intermediate calculations. */
static long double
gammal_positive (long double x, int *exp2_adj)
{
int local_signgam;
if (x < 0.5L)
{
*exp2_adj = 0;
return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x;
}
else if (x <= 1.5L)
{
*exp2_adj = 0;
return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam));
}
else if (x < 12.5L)
{
/* Adjust into the range for using exp (lgamma). */
*exp2_adj = 0;
long double n = __ceill (x - 1.5L);
long double x_adj = x - n;
long double eps;
long double prod = __gamma_productl (x_adj, 0, n, &eps);
return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam))
* prod * (1.0L + eps));
}
else
{
long double eps = 0;
long double x_eps = 0;
long double x_adj = x;
long double prod = 1;
if (x < 24.0L)
{
/* Adjust into the range for applying Stirling's
approximation. */
long double n = __ceill (24.0L - x);
x_adj = x + n;
x_eps = (x - (x_adj - n));
prod = __gamma_productl (x_adj - n, x_eps, n, &eps);
}
/* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
starting by computing pow (X_ADJ, X_ADJ) with a power of 2
factored out. */
long double exp_adj = -eps;
long double x_adj_int = __roundl (x_adj);
long double x_adj_frac = x_adj - x_adj_int;
int x_adj_log2;
long double x_adj_mant = __frexpl (x_adj, &x_adj_log2);
if (x_adj_mant < M_SQRT1_2l)
{
x_adj_log2--;
x_adj_mant *= 2.0L;
}
*exp2_adj = x_adj_log2 * (int) x_adj_int;
long double ret = (__ieee754_powl (x_adj_mant, x_adj)
* __ieee754_exp2l (x_adj_log2 * x_adj_frac)
* __ieee754_expl (-x_adj)
* __ieee754_sqrtl (2 * M_PIl / x_adj)
/ prod);
exp_adj += x_eps * __ieee754_logl (x_adj);
long double bsum = gamma_coeff[NCOEFF - 1];
long double x_adj2 = x_adj * x_adj;
for (size_t i = 1; i <= NCOEFF - 1; i++)
bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
exp_adj += bsum / x_adj;
return ret + ret * __expm1l (exp_adj);
}
}
long double
__ieee754_gammal_r (long double x, int *signgamp)
{
int64_t hx;
u_int64_t lx;
long double ret;
GET_LDOUBLE_WORDS64 (hx, lx, x);
if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
{
/* Return value for x == 0 is Inf with divide by zero exception. */
*signgamp = 0;
return 1.0 / x;
}
if (hx < 0 && (u_int64_t) hx < 0xffff000000000000ULL && __rintl (x) == x)
{
/* Return value for integer x < 0 is NaN with invalid exception. */
*signgamp = 0;
return (x - x) / (x - x);
}
if (hx == 0xffff000000000000ULL && lx == 0)
{
/* x == -Inf. According to ISO this is NaN. */
*signgamp = 0;
return x - x;
}
if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL)
{
/* Positive infinity (return positive infinity) or NaN (return
NaN). */
*signgamp = 0;
return x + x;
}
if (x >= 1756.0L)
{
/* Overflow. */
*signgamp = 0;
return LDBL_MAX * LDBL_MAX;
}
else
{
SET_RESTORE_ROUNDL (FE_TONEAREST);
if (x > 0.0L)
{
*signgamp = 0;
int exp2_adj;
ret = gammal_positive (x, &exp2_adj);
ret = __scalbnl (ret, exp2_adj);
}
else if (x >= -LDBL_EPSILON / 4.0L)
{
*signgamp = 0;
ret = 1.0L / x;
}
else
{
long double tx = __truncl (x);
*signgamp = (tx == 2.0L * __truncl (tx / 2.0L)) ? -1 : 1;
if (x <= -1775.0L)
/* Underflow. */
ret = LDBL_MIN * LDBL_MIN;
else
{
long double frac = tx - x;
if (frac > 0.5L)
frac = 1.0L - frac;
long double sinpix = (frac <= 0.25L
? __sinl (M_PIl * frac)
: __cosl (M_PIl * (0.5L - frac)));
int exp2_adj;
ret = M_PIl / (-x * sinpix
* gammal_positive (-x, &exp2_adj));
ret = __scalbnl (ret, -exp2_adj);
if (ret < LDBL_MIN)
{
long double force_underflow = ret * ret;
math_force_eval (force_underflow);
}
}
}
}
if (isinf (ret) && x != 0)
{
if (*signgamp < 0)
return -(-__copysignl (LDBL_MAX, ret) * LDBL_MAX);
else
return __copysignl (LDBL_MAX, ret) * LDBL_MAX;
}
else if (ret == 0)
{
if (*signgamp < 0)
return -(-__copysignl (LDBL_MIN, ret) * LDBL_MIN);
else
return __copysignl (LDBL_MIN, ret) * LDBL_MIN;
}
else
return ret;
}
strong_alias (__ieee754_gammal_r, __gammal_r_finite)