Joseph Myers 0bf061d3e3 Fix erf underflow handling near 0 (bug 16516).
Bug 16516 reports spurious underflows from erf (for all floating-point
types), when the result is close to underflowing but does not actually
underflow.

erf (x) is about (2/sqrt(pi))*x for x close to 0, so there are
subnormal arguments for which it does not underflow.  The various
implementations do (x + efx*x) (for efx = 2/sqrt(pi) - 1), for greater
accuracy than if just using a single multiplication by an
approximation to 2/sqrt(pi) (effectively, this way there are a few
more bits in the approximation to 2/sqrt(pi)).  This can introduce
underflows when efx*x underflows even though the final result does
not, so a scaled calculation with 8*efx is done in these cases - but 8
is not a big enough scale factor to avoid all such underflows.  16 is
(any underflows with a scale factor of 16 would only occur when the
final result underflows), so this patch changes the code to use that
factor.  Rather than recomputing all the values of the efx8 variable,
it is removed, leaving it to the compiler's constant folding to
compute 16*efx.  As such scaling can also lose underflows when the
final scaling down happens to be exact, appropriate checks are added
to ensure underflow exceptions occur when required in such cases.

Tested x86_64 and x86; no ulps updates needed.  Also spot-checked for
powerpc32 and mips64 to verify the changes to the ldbl-128ibm and
ldbl-128 implementations.

	[BZ #16516]
	* sysdeps/ieee754/dbl-64/s_erf.c (efx8): Remove variable.
	(__erf): Scale by 16 instead of 8 in potentially underflowing
	case.  Ensure exception if result actually underflows.
	* sysdeps/ieee754/flt-32/s_erff.c (efx8): Remove variable.
	(__erff): Scale by 16 instead of 8 in potentially underflowing
	case.  Ensure exception if result actually underflows.
	* sysdeps/ieee754/ldbl-128/s_erfl.c: Include <float.h>.
	(efx8): Remove variable.
	(__erfl): Scale by 16 instead of 8 in potentially underflowing
	case.  Ensure exception if result actually underflows.
	* sysdeps/ieee754/ldbl-128ibm/s_erfl.c: Include <float.h>.
	(efx8): Remove variable.
	(__erfl): Scale by 16 instead of 8 in potentially underflowing
	case.  Ensure exception if result actually underflows.
	* sysdeps/ieee754/ldbl-96/s_erfl.c: Include <float.h>.
	(efx8): Remove variable.
	(__erfl): Scale by 16 instead of 8 in potentially underflowing
	case.  Ensure exception if result actually underflows.
	* math/auto-libm-test-in: Add more tests of erf.
	* math/auto-libm-test-out: Regenerated.
2014-05-14 12:34:03 +00:00

456 lines
14 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Long double expansions are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* double erf(double x)
* double erfc(double x)
* x
* 2 |\
* erf(x) = --------- | exp(-t*t)dt
* sqrt(pi) \|
* 0
*
* erfc(x) = 1-erf(x)
* Note that
* erf(-x) = -erf(x)
* erfc(-x) = 2 - erfc(x)
*
* Method:
* 1. For |x| in [0, 0.84375]
* erf(x) = x + x*R(x^2)
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
* Remark. The formula is derived by noting
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
* and that
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
* is close to one. The interval is chosen because the fix
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
* near 0.6174), and by some experiment, 0.84375 is chosen to
* guarantee the error is less than one ulp for erf.
*
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
* c = 0.84506291151 rounded to single (24 bits)
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
* 1+(c+P1(s)/Q1(s)) if x < 0
* Remark: here we use the taylor series expansion at x=1.
* erf(1+s) = erf(1) + s*Poly(s)
* = 0.845.. + P1(s)/Q1(s)
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
*
* 3. For x in [1.25,1/0.35(~2.857143)],
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1(z)/S1(z))
* z=1/x^2
* erf(x) = 1 - erfc(x)
*
* 4. For x in [1/0.35,107]
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2(z)/S2(z))
* if -6.666<x<0
* = 2.0 - tiny (if x <= -6.666)
* z=1/x^2
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6.666, else
* erf(x) = sign(x)*(1.0 - tiny)
* Note1:
* To compute exp(-x*x-0.5625+R/S), let s be a single
* precision number and s := x; then
* -x*x = -s*s + (s-x)*(s+x)
* exp(-x*x-0.5626+R/S) =
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
* Note2:
* Here 4 and 5 make use of the asymptotic series
* exp(-x*x)
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
* x*sqrt(pi)
*
* 5. For inf > x >= 107
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
* erfc(x) = tiny*tiny (raise underflow) if x > 0
* = 2 - tiny if x<0
*
* 7. Special case:
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
* erfc/erf(NaN) is NaN
*/
#include <errno.h>
#include <float.h>
#include <math.h>
#include <math_private.h>
static const long double
tiny = 1e-4931L,
half = 0.5L,
one = 1.0L,
two = 2.0L,
/* c = (float)0.84506291151 */
erx = 0.845062911510467529296875L,
/*
* Coefficients for approximation to erf on [0,0.84375]
*/
/* 2/sqrt(pi) - 1 */
efx = 1.2837916709551257389615890312154517168810E-1L,
pp[6] = {
1.122751350964552113068262337278335028553E6L,
-2.808533301997696164408397079650699163276E6L,
-3.314325479115357458197119660818768924100E5L,
-6.848684465326256109712135497895525446398E4L,
-2.657817695110739185591505062971929859314E3L,
-1.655310302737837556654146291646499062882E2L,
},
qq[6] = {
8.745588372054466262548908189000448124232E6L,
3.746038264792471129367533128637019611485E6L,
7.066358783162407559861156173539693900031E5L,
7.448928604824620999413120955705448117056E4L,
4.511583986730994111992253980546131408924E3L,
1.368902937933296323345610240009071254014E2L,
/* 1.000000000000000000000000000000000000000E0 */
},
/*
* Coefficients for approximation to erf in [0.84375,1.25]
*/
/* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x)
-0.15625 <= x <= +.25
Peak relative error 8.5e-22 */
pa[8] = {
-1.076952146179812072156734957705102256059E0L,
1.884814957770385593365179835059971587220E2L,
-5.339153975012804282890066622962070115606E1L,
4.435910679869176625928504532109635632618E1L,
1.683219516032328828278557309642929135179E1L,
-2.360236618396952560064259585299045804293E0L,
1.852230047861891953244413872297940938041E0L,
9.394994446747752308256773044667843200719E-2L,
},
qa[7] = {
4.559263722294508998149925774781887811255E2L,
3.289248982200800575749795055149780689738E2L,
2.846070965875643009598627918383314457912E2L,
1.398715859064535039433275722017479994465E2L,
6.060190733759793706299079050985358190726E1L,
2.078695677795422351040502569964299664233E1L,
4.641271134150895940966798357442234498546E0L,
/* 1.000000000000000000000000000000000000000E0 */
},
/*
* Coefficients for approximation to erfc in [1.25,1/0.35]
*/
/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2))
1/2.85711669921875 < 1/x < 1/1.25
Peak relative error 3.1e-21 */
ra[] = {
1.363566591833846324191000679620738857234E-1L,
1.018203167219873573808450274314658434507E1L,
1.862359362334248675526472871224778045594E2L,
1.411622588180721285284945138667933330348E3L,
5.088538459741511988784440103218342840478E3L,
8.928251553922176506858267311750789273656E3L,
7.264436000148052545243018622742770549982E3L,
2.387492459664548651671894725748959751119E3L,
2.220916652813908085449221282808458466556E2L,
},
sa[] = {
-1.382234625202480685182526402169222331847E1L,
-3.315638835627950255832519203687435946482E2L,
-2.949124863912936259747237164260785326692E3L,
-1.246622099070875940506391433635999693661E4L,
-2.673079795851665428695842853070996219632E4L,
-2.880269786660559337358397106518918220991E4L,
-1.450600228493968044773354186390390823713E4L,
-2.874539731125893533960680525192064277816E3L,
-1.402241261419067750237395034116942296027E2L,
/* 1.000000000000000000000000000000000000000E0 */
},
/*
* Coefficients for approximation to erfc in [1/.35,107]
*/
/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2))
1/6.6666259765625 < 1/x < 1/2.85711669921875
Peak relative error 4.2e-22 */
rb[] = {
-4.869587348270494309550558460786501252369E-5L,
-4.030199390527997378549161722412466959403E-3L,
-9.434425866377037610206443566288917589122E-2L,
-9.319032754357658601200655161585539404155E-1L,
-4.273788174307459947350256581445442062291E0L,
-8.842289940696150508373541814064198259278E0L,
-7.069215249419887403187988144752613025255E0L,
-1.401228723639514787920274427443330704764E0L,
},
sb[] = {
4.936254964107175160157544545879293019085E-3L,
1.583457624037795744377163924895349412015E-1L,
1.850647991850328356622940552450636420484E0L,
9.927611557279019463768050710008450625415E0L,
2.531667257649436709617165336779212114570E1L,
2.869752886406743386458304052862814690045E1L,
1.182059497870819562441683560749192539345E1L,
/* 1.000000000000000000000000000000000000000E0 */
},
/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2))
1/107 <= 1/x <= 1/6.6666259765625
Peak relative error 1.1e-21 */
rc[] = {
-8.299617545269701963973537248996670806850E-5L,
-6.243845685115818513578933902532056244108E-3L,
-1.141667210620380223113693474478394397230E-1L,
-7.521343797212024245375240432734425789409E-1L,
-1.765321928311155824664963633786967602934E0L,
-1.029403473103215800456761180695263439188E0L,
},
sc[] = {
8.413244363014929493035952542677768808601E-3L,
2.065114333816877479753334599639158060979E-1L,
1.639064941530797583766364412782135680148E0L,
4.936788463787115555582319302981666347450E0L,
5.005177727208955487404729933261347679090E0L,
/* 1.000000000000000000000000000000000000000E0 */
};
long double
__erfl (long double x)
{
long double R, S, P, Q, s, y, z, r;
int32_t ix, i;
u_int32_t se, i0, i1;
GET_LDOUBLE_WORDS (se, i0, i1, x);
ix = se & 0x7fff;
if (ix >= 0x7fff)
{ /* erf(nan)=nan */
i = ((se & 0xffff) >> 15) << 1;
return (long double) (1 - i) + one / x; /* erf(+-inf)=+-1 */
}
ix = (ix << 16) | (i0 >> 16);
if (ix < 0x3ffed800) /* |x|<0.84375 */
{
if (ix < 0x3fde8000) /* |x|<2**-33 */
{
if (ix < 0x00080000)
{
/* Avoid spurious underflow. */
long double ret = 0.0625 * (16.0 * x + (16.0 * efx) * x);
if (fabsl (ret) < LDBL_MIN)
{
long double force_underflow = ret * ret;
math_force_eval (force_underflow);
}
return ret;
}
return x + efx * x;
}
z = x * x;
r = pp[0] + z * (pp[1]
+ z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
s = qq[0] + z * (qq[1]
+ z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
y = r / s;
return x + x * y;
}
if (ix < 0x3fffa000) /* 1.25 */
{ /* 0.84375 <= |x| < 1.25 */
s = fabsl (x) - one;
P = pa[0] + s * (pa[1] + s * (pa[2]
+ s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
Q = qa[0] + s * (qa[1] + s * (qa[2]
+ s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
if ((se & 0x8000) == 0)
return erx + P / Q;
else
return -erx - P / Q;
}
if (ix >= 0x4001d555) /* 6.6666259765625 */
{ /* inf>|x|>=6.666 */
if ((se & 0x8000) == 0)
return one - tiny;
else
return tiny - one;
}
x = fabsl (x);
s = one / (x * x);
if (ix < 0x4000b6db) /* 2.85711669921875 */
{
R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +
s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));
S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +
s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));
}
else
{ /* |x| >= 1/0.35 */
R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +
s * (rb[5] + s * (rb[6] + s * rb[7]))))));
S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +
s * (sb[5] + s * (sb[6] + s))))));
}
z = x;
GET_LDOUBLE_WORDS (i, i0, i1, z);
i1 = 0;
SET_LDOUBLE_WORDS (z, i, i0, i1);
r =
__ieee754_expl (-z * z - 0.5625) * __ieee754_expl ((z - x) * (z + x) +
R / S);
if ((se & 0x8000) == 0)
return one - r / x;
else
return r / x - one;
}
weak_alias (__erfl, erfl)
long double
__erfcl (long double x)
{
int32_t hx, ix;
long double R, S, P, Q, s, y, z, r;
u_int32_t se, i0, i1;
GET_LDOUBLE_WORDS (se, i0, i1, x);
ix = se & 0x7fff;
if (ix >= 0x7fff)
{ /* erfc(nan)=nan */
/* erfc(+-inf)=0,2 */
return (long double) (((se & 0xffff) >> 15) << 1) + one / x;
}
ix = (ix << 16) | (i0 >> 16);
if (ix < 0x3ffed800) /* |x|<0.84375 */
{
if (ix < 0x3fbe0000) /* |x|<2**-65 */
return one - x;
z = x * x;
r = pp[0] + z * (pp[1]
+ z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
s = qq[0] + z * (qq[1]
+ z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
y = r / s;
if (ix < 0x3ffd8000) /* x<1/4 */
{
return one - (x + x * y);
}
else
{
r = x * y;
r += (x - half);
return half - r;
}
}
if (ix < 0x3fffa000) /* 1.25 */
{ /* 0.84375 <= |x| < 1.25 */
s = fabsl (x) - one;
P = pa[0] + s * (pa[1] + s * (pa[2]
+ s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
Q = qa[0] + s * (qa[1] + s * (qa[2]
+ s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
if ((se & 0x8000) == 0)
{
z = one - erx;
return z - P / Q;
}
else
{
z = erx + P / Q;
return one + z;
}
}
if (ix < 0x4005d600) /* 107 */
{ /* |x|<107 */
x = fabsl (x);
s = one / (x * x);
if (ix < 0x4000b6db) /* 2.85711669921875 */
{ /* |x| < 1/.35 ~ 2.857143 */
R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +
s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));
S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +
s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));
}
else if (ix < 0x4001d555) /* 6.6666259765625 */
{ /* 6.666 > |x| >= 1/.35 ~ 2.857143 */
R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +
s * (rb[5] + s * (rb[6] + s * rb[7]))))));
S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +
s * (sb[5] + s * (sb[6] + s))))));
}
else
{ /* |x| >= 6.666 */
if (se & 0x8000)
return two - tiny; /* x < -6.666 */
R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] +
s * (rc[4] + s * rc[5]))));
S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] +
s * (sc[4] + s))));
}
z = x;
GET_LDOUBLE_WORDS (hx, i0, i1, z);
i1 = 0;
i0 &= 0xffffff00;
SET_LDOUBLE_WORDS (z, hx, i0, i1);
r = __ieee754_expl (-z * z - 0.5625) *
__ieee754_expl ((z - x) * (z + x) + R / S);
if ((se & 0x8000) == 0)
{
long double ret = r / x;
if (ret == 0)
__set_errno (ERANGE);
return ret;
}
else
return two - r / x;
}
else
{
if ((se & 0x8000) == 0)
{
__set_errno (ERANGE);
return tiny * tiny;
}
else
return two - tiny;
}
}
weak_alias (__erfcl, erfcl)