glibc/sysdeps/ia64/fpu/libm_sincosf.S
Mike Frysinger d5efd131d4 ia64: move from main tree
This is a simple copy of the last version of ia64 in the main tree.
It does not work as-is, but serves as a basis for follow up changes
to restore it to working order.

Signed-off-by: Mike Frysinger <vapier@gentoo.org>
2012-04-22 15:09:03 -04:00

746 lines
22 KiB
ArmAsm

.file "libm_sincosf.s"
// Copyright (c) 2002 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2002 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/01/02 Initial version
// 02/18/02 Large arguments processing routine is excluded.
// External interface entry points are added
// 02/26/02 Added temporary return of results in r8, r9
// 03/13/02 Corrected restore of predicate registers
// 03/19/02 Added stack unwind around call to __libm_cisf_large
// 09/05/02 Work range is widened by reduction strengthen (2 parts of Pi/16)
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 02/11/04 cisf is moved to the separate file.
// 03/31/05 Reformatted delimiters between data tables
// API
//==============================================================
// 1) void sincosf(float, float*s, float*c)
// 2) __libm_sincosf - internal LIBM function, that accepts
// argument in f8 and returns cosine through f8, sine through f9
//
// Overview of operation
//==============================================================
//
// Step 1
// ======
// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
// divide x by pi/2^k.
// Multiply by 2^k/pi.
// nfloat = Round result to integer (round-to-nearest)
//
// r = x - nfloat * pi/2^k
// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
// pi/2^k is stored as two numbers that when added make pi/2^k.
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
// HIGH part is rounded to zero, LOW - to nearest
//
// x = (nfloat * pi/2^k) + r
// r is small enough that we can use a polynomial approximation
// and is referred to as the reduced argument.
//
// Step 3
// ======
// Take the unreduced part and remove the multiples of 2pi.
// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
//
// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
// N * 2^(k+1)
// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
// nfloat * pi/2^k = N2pi + M * pi/2^k
//
//
// Sin(x) = Sin((nfloat * pi/2^k) + r)
// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
//
// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
// = Sin(Mpi/2^k)
//
// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
// = Cos(Mpi/2^k)
//
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
//
//
// Step 4
// ======
// 0 <= M < 2^(k+1)
// There are 2^(k+1) Sin entries in a table.
// There are 2^(k+1) Cos entries in a table.
//
// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
//
//
// Step 5
// ======
// Calculate Cos(r) and Sin(r) by polynomial approximation.
//
// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos
// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin
//
// and the coefficients q1, q2 and p1, p2 are stored in a table
//
//
// Calculate
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
//
// as follows
//
// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
// rsq = r*r
//
//
// P = p1 + r^2p2
// Q = q1 + r^2q2
//
// rcub = r * rsq
// Sin(r) = r + rcub * P
// = r + r^3p1 + r^5p2 = Sin(r)
//
// P = r + rcub * P
//
// Answer = S[m] Cos(r) + C[m] P
//
// Cos(r) = 1 + rsq Q
// Cos(r) = 1 + r^2 Q
// Cos(r) = 1 + r^2 (q1 + r^2q2)
// Cos(r) = 1 + r^2q1 + r^4q2
//
// S[m] Cos(r) = S[m](1 + rsq Q)
// S[m] Cos(r) = S[m] + S[m] rsq Q
// S[m] Cos(r) = S[m] + s_rsq Q
// Q = S[m] + s_rsq Q
//
// Then,
//
// Answer = Q + C[m] P
// Registers used
//==============================================================
// general input registers:
// r14 -> r19
// r32 -> r49
// predicate registers used:
// p6 -> p14
// floating-point registers used
// f9 -> f15
// f32 -> f100
// Assembly macros
//==============================================================
cisf_Arg = f8
cisf_Sin_res = f9
cisf_Cos_res = f8
cisf_NORM_f8 = f10
cisf_W = f11
cisf_int_Nfloat = f12
cisf_Nfloat = f13
cisf_r = f14
cisf_r_exact = f68
cisf_rsq = f15
cisf_rcub = f32
cisf_Inv_Pi_by_16 = f33
cisf_Pi_by_16_hi = f34
cisf_Pi_by_16_lo = f35
cisf_Inv_Pi_by_64 = f36
cisf_Pi_by_64_hi = f37
cisf_Pi_by_64_lo = f38
cisf_P1 = f39
cisf_Q1 = f40
cisf_P2 = f41
cisf_Q2 = f42
cisf_P3 = f43
cisf_Q3 = f44
cisf_P4 = f45
cisf_Q4 = f46
cisf_P_temp1 = f47
cisf_P_temp2 = f48
cisf_Q_temp1 = f49
cisf_Q_temp2 = f50
cisf_P = f51
cisf_SIG_INV_PI_BY_16_2TO61 = f52
cisf_RSHF_2TO61 = f53
cisf_RSHF = f54
cisf_2TOM61 = f55
cisf_NFLOAT = f56
cisf_W_2TO61_RSH = f57
cisf_tmp = f58
cisf_Sm_sin = f59
cisf_Cm_sin = f60
cisf_Sm_cos = f61
cisf_Cm_cos = f62
cisf_srsq_sin = f63
cisf_srsq_cos = f64
cisf_Q_sin = f65
cisf_Q_cos = f66
cisf_Q = f67
/////////////////////////////////////////////////////////////
cisf_pResSin = r33
cisf_pResCos = r34
cisf_exp_limit = r35
cisf_r_signexp = r36
cisf_AD_beta_table = r37
cisf_r_sincos = r38
cisf_r_exp = r39
cisf_r_17_ones = r40
cisf_GR_sig_inv_pi_by_16 = r14
cisf_GR_rshf_2to61 = r15
cisf_GR_rshf = r16
cisf_GR_exp_2tom61 = r17
cisf_GR_n = r18
cisf_GR_n_sin = r19
cisf_GR_m_sin = r41
cisf_GR_32m_sin = r41
cisf_GR_n_cos = r42
cisf_GR_m_cos = r43
cisf_GR_32m_cos = r43
cisf_AD_2_sin = r44
cisf_AD_2_cos = r45
cisf_gr_tmp = r46
GR_SAVE_B0 = r47
GR_SAVE_GP = r48
rB0_SAVED = r49
GR_SAVE_PFS = r50
GR_SAVE_PR = r51
cisf_AD_1 = r52
RODATA
.align 16
// Pi/16 parts
LOCAL_OBJECT_START(double_cisf_pi)
data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
LOCAL_OBJECT_END(double_cisf_pi)
// Coefficients for polynomials
LOCAL_OBJECT_START(double_cisf_pq_k4)
data8 0x3F810FABB668E9A2 // P2
data8 0x3FA552E3D6DE75C9 // Q2
data8 0xBFC555554447BC7F // P1
data8 0xBFDFFFFFC447610A // Q1
LOCAL_OBJECT_END(double_cisf_pq_k4)
// Sincos table (S[m], C[m])
LOCAL_OBJECT_START(double_sin_cos_beta_k4)
data8 0x0000000000000000 // sin ( 0 Pi / 16 )
data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
//
data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
//
data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
//
data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
//
data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
//
data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
//
data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
//
data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
//
data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
data8 0x0000000000000000 // cos ( 8 Pi / 16 )
//
data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
//
data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
//
data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
//
data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
//
data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
//
data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
//
data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
//
data8 0x0000000000000000 // sin ( 16 Pi / 16 )
data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
//
data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
//
data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
//
data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
//
data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
//
data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
//
data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
//
data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
//
data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
data8 0x0000000000000000 // cos ( 24 Pi / 16 )
//
data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
//
data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
//
data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
//
data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
//
data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
//
data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
//
data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
//
data8 0x0000000000000000 // sin ( 32 Pi / 16 )
data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
LOCAL_OBJECT_END(double_sin_cos_beta_k4)
.section .text
GLOBAL_IEEE754_ENTRY(sincosf)
// cis_GR_sig_inv_pi_by_16 = significand of 16/pi
{ .mlx
alloc GR_SAVE_PFS = ar.pfs, 0, 21, 0, 0
movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // 16/pi signd
}
// cis_GR_rshf_2to61 = 1.1000 2^(63+63-2)
{ .mlx
addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
movl cisf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
};;
{ .mfi
ld8 cisf_AD_1 = [cisf_AD_1]
fnorm.s1 cisf_NORM_f8 = cisf_Arg
cmp.eq p13, p14 = r0, r0 // p13 set for sincos
}
// cis_GR_exp_2tom61 = exponent of scaling factor 2^-61
{ .mib
mov cisf_GR_exp_2tom61 = 0xffff-61
nop.i 0
br.cond.sptk _CISF_COMMON
};;
GLOBAL_IEEE754_END(sincosf)
GLOBAL_LIBM_ENTRY(__libm_sincosf)
{ .mlx
// cisf_GR_sig_inv_pi_by_16 = significand of 16/pi
alloc GR_SAVE_PFS = ar.pfs,0,21,0,0
movl cisf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A
}
// cisf_GR_rshf_2to61 = 1.1000 2^(63+63-2)
{ .mlx
addl cisf_AD_1 = @ltoff(double_cisf_pi), gp
movl cisf_GR_rshf_2to61 = 0x47b8000000000000
};;
// p14 set for __libm_sincos and cis
{ .mfi
ld8 cisf_AD_1 = [cisf_AD_1]
fnorm.s1 cisf_NORM_f8 = cisf_Arg
cmp.eq p14, p13 = r0, r0
}
// cisf_GR_exp_2tom61 = exponent of scaling factor 2^-61
{ .mib
mov cisf_GR_exp_2tom61 = 0xffff-61
nop.i 0
nop.b 0
};;
_CISF_COMMON:
// Form two constants we need
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
// fcmp used to set denormal, and invalid on snans
{ .mfi
setf.sig cisf_SIG_INV_PI_BY_16_2TO61 = cisf_GR_sig_inv_pi_by_16
fclass.m p6,p0 = cisf_Arg, 0xe7//if x=0,inf,nan
addl cisf_gr_tmp = -1, r0
}
// cisf_GR_rshf = 1.1000 2^63 for right shift
{ .mlx
setf.d cisf_RSHF_2TO61 = cisf_GR_rshf_2to61
movl cisf_GR_rshf = 0x43e8000000000000
};;
// Form another constant
// 2^-61 for scaling Nfloat
// 0x10017 is register_bias + 24.
// So if f8 >= 2^24, go to large args routine
{ .mmi
getf.exp cisf_r_signexp = cisf_Arg
setf.exp cisf_2TOM61 = cisf_GR_exp_2tom61
mov cisf_exp_limit = 0x10017
};;
// Load the two pieces of pi/16
// Form another constant
// 1.1000...000 * 2^63, the right shift constant
{ .mmb
ldfe cisf_Pi_by_16_hi = [cisf_AD_1],16
setf.d cisf_RSHF = cisf_GR_rshf
(p6) br.cond.spnt _CISF_SPECIAL_ARGS
};;
{ .mmi
ldfe cisf_Pi_by_16_lo = [cisf_AD_1],16
setf.sig cisf_tmp = cisf_gr_tmp //constant for inexact set
nop.i 0
};;
// Start loading P, Q coefficients
{ .mmi
ldfpd cisf_P2,cisf_Q2 = [cisf_AD_1],16
nop.m 0
dep.z cisf_r_exp = cisf_r_signexp, 0, 17
};;
// p10 is true if we must call routines to handle larger arguments
// p10 is true if f8 exp is >= 0x10017
{ .mmb
ldfpd cisf_P1,cisf_Q1 = [cisf_AD_1], 16
cmp.ge p10, p0 = cisf_r_exp, cisf_exp_limit
(p10) br.cond.spnt _CISF_LARGE_ARGS // go to |x| >= 2^24 path
};;
// cisf_W = x * cisf_Inv_Pi_by_16
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
// rightmost bits of significand
{ .mfi
nop.m 0
fma.s1 cisf_W_2TO61_RSH = cisf_NORM_f8,cisf_SIG_INV_PI_BY_16_2TO61,cisf_RSHF_2TO61
nop.i 0
};;
// cisf_NFLOAT = Round_Int_Nearest(cisf_W)
{ .mfi
nop.m 0
fms.s1 cisf_NFLOAT = cisf_W_2TO61_RSH,cisf_2TOM61,cisf_RSHF
nop.i 0
};;
// N = (int)cisf_int_Nfloat
{ .mfi
getf.sig cisf_GR_n = cisf_W_2TO61_RSH
nop.f 0
nop.i 0
};;
// Add 2^(k-1) (which is in cisf_r_sincos) to N
// cisf_r = -cisf_Nfloat * cisf_Pi_by_16_hi + x
// cisf_r = cisf_r -cisf_Nfloat * cisf_Pi_by_16_lo
{ .mfi
add cisf_GR_n_cos = 0x8, cisf_GR_n
fnma.s1 cisf_r = cisf_NFLOAT, cisf_Pi_by_16_hi, cisf_NORM_f8
nop.i 0
};;
//Get M (least k+1 bits of N)
{ .mmi
and cisf_GR_m_sin = 0x1f,cisf_GR_n
and cisf_GR_m_cos = 0x1f,cisf_GR_n_cos
nop.i 0
};;
{ .mmi
shladd cisf_AD_2_cos = cisf_GR_m_cos,4, cisf_AD_1
shladd cisf_AD_2_sin = cisf_GR_m_sin,4, cisf_AD_1
nop.i 0
};;
// den. input to set uflow
{ .mmf
ldfpd cisf_Sm_sin, cisf_Cm_sin = [cisf_AD_2_sin]
ldfpd cisf_Sm_cos, cisf_Cm_cos = [cisf_AD_2_cos]
fclass.m.unc p10,p0 = cisf_Arg,0x0b
};;
{ .mfi
nop.m 0
fma.s1 cisf_rsq = cisf_r, cisf_r, f0 // get r^2
nop.i 0
}
{ .mfi
nop.m 0
fmpy.s0 cisf_tmp = cisf_tmp,cisf_tmp // inexact flag
nop.i 0
};;
{ .mmf
nop.m 0
nop.m 0
fnma.s1 cisf_r_exact = cisf_NFLOAT, cisf_Pi_by_16_lo, cisf_r
};;
{ .mfi
nop.m 0
fma.s1 cisf_P = cisf_rsq, cisf_P2, cisf_P1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 cisf_Q = cisf_rsq, cisf_Q2, cisf_Q1
nop.i 0
};;
{ .mfi
nop.m 0
fmpy.s1 cisf_rcub = cisf_r_exact, cisf_rsq // get r^3
nop.i 0
};;
{ .mfi
nop.m 0
fmpy.s1 cisf_srsq_sin = cisf_Sm_sin,cisf_rsq
nop.i 0
}
{ .mfi
nop.m 0
fmpy.s1 cisf_srsq_cos = cisf_Sm_cos,cisf_rsq
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 cisf_P = cisf_rcub,cisf_P,cisf_r_exact
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 cisf_Q_sin = cisf_srsq_sin,cisf_Q, cisf_Sm_sin
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 cisf_Q_cos = cisf_srsq_cos,cisf_Q, cisf_Sm_cos
nop.i 0
};;
// If den. arg, force underflow to be set
{ .mfi
nop.m 0
(p10) fmpy.s.s0 cisf_tmp = cisf_Arg,cisf_Arg
nop.i 0
};;
//Final sin
{ .mfi
nop.m 0
fma.s.s0 cisf_Sin_res = cisf_Cm_sin, cisf_P, cisf_Q_sin
nop.i 0
}
//Final cos
{ .mfb
nop.m 0
fma.s.s0 cisf_Cos_res = cisf_Cm_cos, cisf_P, cisf_Q_cos
(p14) br.cond.sptk _CISF_RETURN //com. exit for __libm_sincos and cis main path
};;
{ .mmb
stfs [cisf_pResSin] = cisf_Sin_res
stfs [cisf_pResCos] = cisf_Cos_res
br.ret.sptk b0 // common exit for sincos main path
};;
_CISF_SPECIAL_ARGS:
// sinf(+/-0) = +/-0
// sinf(Inf) = NaN
// sinf(NaN) = NaN
{ .mfi
nop.m 999
fma.s.s0 cisf_Sin_res = cisf_Arg, f0, f0 // sinf(+/-0,NaN,Inf)
nop.i 999
};;
// cosf(+/-0) = 1.0
// cosf(Inf) = NaN
// cosf(NaN) = NaN
{ .mfb
nop.m 999
fma.s.s0 cisf_Cos_res = cisf_Arg, f0, f1 // cosf(+/-0,NaN,Inf)
(p14) br.cond.sptk _CISF_RETURN //spec exit for __libm_sincos and cis main path
};;
{ .mmb
stfs [cisf_pResSin] = cisf_Sin_res
stfs [cisf_pResCos] = cisf_Cos_res
br.ret.sptk b0 // special exit for sincos main path
};;
// exit for sincos
// NOTE! r8 and r9 used only because of compiler issue
// connected with float point complex function arguments pass
// After fix of this issue this operations can be deleted
_CISF_RETURN:
{ .mmb
getf.s r8 = cisf_Cos_res
getf.s r9 = cisf_Sin_res
br.ret.sptk b0 // exit for sincos
};;
GLOBAL_LIBM_END(__libm_sincosf)
//// |x| > 2^24 path ///////
.proc _CISF_LARGE_ARGS
_CISF_LARGE_ARGS:
.prologue
{ .mfi
nop.m 0
nop.f 0
.save ar.pfs, GR_SAVE_PFS
mov GR_SAVE_PFS = ar.pfs
};;
{ .mfi
mov GR_SAVE_GP = gp
nop.f 0
.save b0, GR_SAVE_B0
mov GR_SAVE_B0 = b0
};;
.body
// Call of huge arguments sincos
{ .mib
nop.m 0
mov GR_SAVE_PR = pr
br.call.sptk b0 = __libm_sincos_large
};;
{ .mfi
mov gp = GR_SAVE_GP
nop.f 0
mov pr = GR_SAVE_PR, 0x1fffe
}
;;
{ .mfi
nop.m 0
nop.f 0
mov b0 = GR_SAVE_B0
}
;;
{ .mfi
nop.m 0
fma.s.s0 cisf_Cos_res = cisf_Cos_res, f1, f0
mov ar.pfs = GR_SAVE_PFS
}
// exit for |x| > 2^24 path (__libm_sincos and cis)
{ .mfb
nop.m 0
fma.s.s0 cisf_Sin_res = cisf_Sin_res, f1, f0
(p14) br.cond.sptk _CISF_RETURN
};;
{ .mmb
stfs [cisf_pResSin] = cisf_Sin_res
stfs [cisf_pResCos] = cisf_Cos_res
br.ret.sptk b0 // exit for sincos |x| > 2^24 path
};;
.endp _CISF_LARGE_ARGS
.type __libm_sincos_large#,@function
.global __libm_sincos_large#