c70e4e9c9e
Since the x86-64 assembly version of sincosf is higly optimized with vector instructions, there isn't much room for improvement. However s_sincosf.c written in C with vector math and intrinsics can be optimized by GCC with FMA. On Skylake, bench-sincosf reports performance improvement: Assembly FMA improvement max 104.042 101.008 3% min 9.426 8.586 10% mean 20.6209 18.2238 13% * sysdeps/x86_64/fpu/multiarch/Makefile (libm-sysdep_routines): Add s_sincosf-sse2 and s_sincosf-fma. (CFLAGS-s_sincosf-fma.c): New. * sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c: New file. * sysdeps/x86_64/fpu/multiarch/s_sincosf-sse2.S: Likewise. * sysdeps/x86_64/fpu/multiarch/s_sincosf.c: Likewise. * sysdeps/x86_64/fpu/s_sincosf.S: Don't add alias if __sincosf is defined.
241 lines
7.0 KiB
C
241 lines
7.0 KiB
C
/* Compute sine and cosine of argument optimized with vector.
|
|
Copyright (C) 2017 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <x86intrin.h>
|
|
#include <libm-alias-float.h>
|
|
#include "s_sincosf.h"
|
|
|
|
#define SINCOSF __sincosf_fma
|
|
|
|
#ifndef SINCOSF
|
|
# define SINCOSF_FUNC __sincosf
|
|
#else
|
|
# define SINCOSF_FUNC SINCOSF
|
|
#endif
|
|
|
|
/* Chebyshev constants for sin and cos, range -PI/4 - PI/4. */
|
|
static const __v2df V0 = { -0x1.5555555551cd9p-3, -0x1.ffffffffe98aep-2};
|
|
static const __v2df V1 = { 0x1.1111110c2688bp-7, 0x1.55555545c50c7p-5 };
|
|
static const __v2df V2 = { -0x1.a019f8b4bd1f9p-13, -0x1.6c16b348b6874p-10 };
|
|
static const __v2df V3 = { 0x1.71d7264e6b5b4p-19, 0x1.a00eb9ac43ccp-16 };
|
|
static const __v2df V4 = { -0x1.a947e1674b58ap-26, -0x1.23c97dd8844d7p-22 };
|
|
|
|
/* Chebyshev constants for sin and cos, range 2^-27 - 2^-5. */
|
|
static const __v2df VC0 = { -0x1.555555543d49dp-3, -0x1.fffffff5cc6fdp-2 };
|
|
static const __v2df VC1 = { 0x1.110f475cec8c5p-7, 0x1.55514b178dac5p-5 };
|
|
|
|
static const __v2df v2ones = { 1.0, 1.0 };
|
|
|
|
/* Compute the sine and cosine values using Chebyshev polynomials where
|
|
THETA is the range reduced absolute value of the input
|
|
and it is less than Pi/4,
|
|
N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
|
|
whether a sine or cosine approximation is more accurate and
|
|
SIGNBIT is used to add the correct sign after the Chebyshev
|
|
polynomial is computed. */
|
|
static void
|
|
reduced_sincos (const double theta, const unsigned int n,
|
|
const unsigned int signbit, float *sinx, float *cosx)
|
|
{
|
|
__v2df v2x, v2sx, v2cx;
|
|
const __v2df v2theta = { theta, theta };
|
|
const __v2df v2theta2 = v2theta * v2theta;
|
|
/* Here sinf() and cosf() are calculated using sin Chebyshev polynomial:
|
|
x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
|
|
v2x = V3 + v2theta2 * V4; /* S3+x^2*S4. */
|
|
v2x = V2 + v2theta2 * v2x; /* S2+x^2*(S3+x^2*S4). */
|
|
v2x = V1 + v2theta2 * v2x; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */
|
|
v2x = V0 + v2theta2 * v2x; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */
|
|
v2x = v2theta2 * v2x;
|
|
v2cx = v2ones + v2x;
|
|
v2sx = v2theta + v2theta * v2x;
|
|
/* We are operating on |x|, so we need to add back the original
|
|
signbit for sinf. */
|
|
/* Determine positive or negative primary interval. */
|
|
/* Are we in the primary interval of sin or cos? */
|
|
if ((n & 2) == 0)
|
|
{
|
|
const __v2df v2sign =
|
|
{
|
|
ones[((n >> 2) & 1) ^ signbit],
|
|
ones[((n + 2) >> 2) & 1]
|
|
};
|
|
v2cx[0] = v2sx[0];
|
|
v2cx *= v2sign;
|
|
__v4sf v4sx = _mm_cvtpd_ps (v2cx);
|
|
*sinx = v4sx[0];
|
|
*cosx = v4sx[1];
|
|
}
|
|
else
|
|
{
|
|
const __v2df v2sign =
|
|
{
|
|
ones[((n + 2) >> 2) & 1],
|
|
ones[((n >> 2) & 1) ^ signbit]
|
|
};
|
|
v2cx[0] = v2sx[0];
|
|
v2cx *= v2sign;
|
|
__v4sf v4sx = _mm_cvtpd_ps (v2cx);
|
|
*sinx = v4sx[1];
|
|
*cosx = v4sx[0];
|
|
}
|
|
}
|
|
|
|
void
|
|
SINCOSF_FUNC (float x, float *sinx, float *cosx)
|
|
{
|
|
double theta = x;
|
|
double abstheta = fabs (theta);
|
|
uint32_t ix, xi;
|
|
GET_FLOAT_WORD (xi, x);
|
|
/* |x| */
|
|
ix = xi & 0x7fffffff;
|
|
/* If |x|< Pi/4. */
|
|
if (ix < 0x3f490fdb)
|
|
{
|
|
if (ix >= 0x3d000000) /* |x| >= 2^-5. */
|
|
{
|
|
__v2df v2x, v2sx, v2cx;
|
|
const __v2df v2theta = { theta, theta };
|
|
const __v2df v2theta2 = v2theta * v2theta;
|
|
/* Chebyshev polynomial of the form for sin and cos. */
|
|
v2x = V3 + v2theta2 * V4;
|
|
v2x = V2 + v2theta2 * v2x;
|
|
v2x = V1 + v2theta2 * v2x;
|
|
v2x = V0 + v2theta2 * v2x;
|
|
v2x = v2theta2 * v2x;
|
|
v2cx = v2ones + v2x;
|
|
v2sx = v2theta + v2theta * v2x;
|
|
v2cx[0] = v2sx[0];
|
|
__v4sf v4sx = _mm_cvtpd_ps (v2cx);
|
|
*sinx = v4sx[0];
|
|
*cosx = v4sx[1];
|
|
}
|
|
else if (ix >= 0x32000000) /* |x| >= 2^-27. */
|
|
{
|
|
/* A simpler Chebyshev approximation is close enough for this range:
|
|
for sin: x+x^3*(SS0+x^2*SS1)
|
|
for cos: 1.0+x^2*(CC0+x^3*CC1). */
|
|
__v2df v2x, v2sx, v2cx;
|
|
const __v2df v2theta = { theta, theta };
|
|
const __v2df v2theta2 = v2theta * v2theta;
|
|
v2x = VC0 + v2theta * v2theta2 * VC1;
|
|
v2x = v2theta2 * v2x;
|
|
v2cx = v2ones + v2x;
|
|
v2sx = v2theta + v2theta * v2x;
|
|
v2cx[0] = v2sx[0];
|
|
__v4sf v4sx = _mm_cvtpd_ps (v2cx);
|
|
*sinx = v4sx[0];
|
|
*cosx = v4sx[1];
|
|
}
|
|
else
|
|
{
|
|
/* Handle some special cases. */
|
|
if (ix)
|
|
*sinx = theta - (theta * SMALL);
|
|
else
|
|
*sinx = theta;
|
|
*cosx = 1.0 - abstheta;
|
|
}
|
|
}
|
|
else /* |x| >= Pi/4. */
|
|
{
|
|
unsigned int signbit = xi >> 31;
|
|
if (ix < 0x40e231d6) /* |x| < 9*Pi/4. */
|
|
{
|
|
/* There are cases where FE_UPWARD rounding mode can
|
|
produce a result of abstheta * inv_PI_4 == 9,
|
|
where abstheta < 9pi/4, so the domain for
|
|
pio2_table must go to 5 (9 / 2 + 1). */
|
|
unsigned int n = (abstheta * inv_PI_4) + 1;
|
|
theta = abstheta - pio2_table[n / 2];
|
|
reduced_sincos (theta, n, signbit, sinx, cosx);
|
|
}
|
|
else if (ix < 0x7f800000)
|
|
{
|
|
if (ix < 0x4b000000) /* |x| < 2^23. */
|
|
{
|
|
unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1;
|
|
double x = n / 2;
|
|
theta = (abstheta - x * PI_2_hi) - x * PI_2_lo;
|
|
/* Argument reduction needed. */
|
|
reduced_sincos (theta, n, signbit, sinx, cosx);
|
|
}
|
|
else /* |x| >= 2^23. */
|
|
{
|
|
x = fabsf (x);
|
|
int exponent
|
|
= (ix >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS;
|
|
exponent += 3;
|
|
exponent /= 28;
|
|
double a = invpio4_table[exponent] * x;
|
|
double b = invpio4_table[exponent + 1] * x;
|
|
double c = invpio4_table[exponent + 2] * x;
|
|
double d = invpio4_table[exponent + 3] * x;
|
|
uint64_t l = a;
|
|
l &= ~0x7;
|
|
a -= l;
|
|
double e = a + b;
|
|
l = e;
|
|
e = a - l;
|
|
if (l & 1)
|
|
{
|
|
e -= 1.0;
|
|
e += b;
|
|
e += c;
|
|
e += d;
|
|
e *= M_PI_4;
|
|
reduced_sincos (e, l + 1, signbit, sinx, cosx);
|
|
}
|
|
else
|
|
{
|
|
e += b;
|
|
e += c;
|
|
e += d;
|
|
if (e <= 1.0)
|
|
{
|
|
e *= M_PI_4;
|
|
reduced_sincos (e, l + 1, signbit, sinx, cosx);
|
|
}
|
|
else
|
|
{
|
|
l++;
|
|
e -= 2.0;
|
|
e *= M_PI_4;
|
|
reduced_sincos (e, l + 1, signbit, sinx, cosx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (ix == 0x7f800000)
|
|
__set_errno (EDOM);
|
|
/* sin/cos(Inf or NaN) is NaN. */
|
|
*sinx = *cosx = x - x;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef SINCOSF
|
|
libm_alias_float (__sincos, sincos)
|
|
#endif
|