Joseph Myers 5a608ccc2d Fix tanf spurious underflows (bug 18221).
The flt-32 implementation of tanf produces spurious underflow
exceptions for some small arguments, through computing values on the
order of x^5.  This patch fixes this by adjusting the threshold for
returning x (or, as applicable, +/- 1/x) to 2**-13 (the next term in
the power series being x^3/3).

Tested for x86_64 and x86.

	[BZ #18221]
	* sysdeps/ieee754/flt-32/k_tanf.c (__kernel_tanf): Use 2**-13 not
	2**-28 as threshold for returning x or +/- 1/x.
	* math/auto-libm-test-in: Add more tests of tan.
	* math/auto-libm-test-out: Regenerated.
2015-05-15 17:47:29 +00:00

95 lines
2.7 KiB
C

/* k_tanf.c -- float version of k_tan.c
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: k_tanf.c,v 1.4 1995/05/10 20:46:39 jtc Exp $";
#endif
#include <math.h>
#include <math_private.h>
static const float
one = 1.0000000000e+00, /* 0x3f800000 */
pio4 = 7.8539812565e-01, /* 0x3f490fda */
pio4lo= 3.7748947079e-08, /* 0x33222168 */
T[] = {
3.3333334327e-01, /* 0x3eaaaaab */
1.3333334029e-01, /* 0x3e088889 */
5.3968254477e-02, /* 0x3d5d0dd1 */
2.1869488060e-02, /* 0x3cb327a4 */
8.8632395491e-03, /* 0x3c11371f */
3.5920790397e-03, /* 0x3b6b6916 */
1.4562094584e-03, /* 0x3abede48 */
5.8804126456e-04, /* 0x3a1a26c8 */
2.4646313977e-04, /* 0x398137b9 */
7.8179444245e-05, /* 0x38a3f445 */
7.1407252108e-05, /* 0x3895c07a */
-1.8558637748e-05, /* 0xb79bae5f */
2.5907305826e-05, /* 0x37d95384 */
};
float __kernel_tanf(float x, float y, int iy)
{
float z,r,v,w,s;
int32_t ix,hx;
GET_FLOAT_WORD(hx,x);
ix = hx&0x7fffffff; /* high word of |x| */
if(ix<0x39000000) /* x < 2**-13 */
{if((int)x==0) { /* generate inexact */
if((ix|(iy+1))==0) return one/fabsf(x);
else return (iy==1)? x: -one/x;
}
}
if(ix>=0x3f2ca140) { /* |x|>=0.6744 */
if(hx<0) {x = -x; y = -y;}
z = pio4-x;
w = pio4lo-y;
x = z+w; y = 0.0;
if (fabsf (x) < 0x1p-13f)
return (1 - ((hx >> 30) & 2)) * iy * (1.0f - 2 * iy * x);
}
z = x*x;
w = z*z;
/* Break x^5*(T[1]+x^2*T[2]+...) into
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
*/
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
s = z*x;
r = y + z*(s*(r+v)+y);
r += T[0]*s;
w = x+r;
if(ix>=0x3f2ca140) {
v = (float)iy;
return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r)));
}
if(iy==1) return w;
else { /* if allow error up to 2 ulp,
simply return -1.0/(x+r) here */
/* compute -1.0/(x+r) accurately */
float a,t;
int32_t i;
z = w;
GET_FLOAT_WORD(i,z);
SET_FLOAT_WORD(z,i&0xfffff000);
v = r-(z - x); /* z+v = r+x */
t = a = -(float)1.0/w; /* a = -1.0/w */
GET_FLOAT_WORD(i,t);
SET_FLOAT_WORD(t,i&0xfffff000);
s = (float)1.0+t*z;
return t+a*(s+t*v);
}
}