365 lines
9.6 KiB
C
365 lines
9.6 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2015 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/***************************************************************************/
|
|
/* MODULE_NAME:uexp.c */
|
|
/* */
|
|
/* FUNCTION:uexp */
|
|
/* exp1 */
|
|
/* */
|
|
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */
|
|
/* mpa.c mpexp.x slowexp.c */
|
|
/* */
|
|
/* An ultimate exp routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of e^x */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
#include <math.h>
|
|
#include "endian.h"
|
|
#include "uexp.h"
|
|
#include "mydefs.h"
|
|
#include "MathLib.h"
|
|
#include "uexp.tbl"
|
|
#include <math_private.h>
|
|
#include <fenv.h>
|
|
#include <float.h>
|
|
|
|
#ifndef SECTION
|
|
# define SECTION
|
|
#endif
|
|
|
|
double __slowexp (double);
|
|
|
|
/* An ultimate exp routine. Given an IEEE double machine number x it computes
|
|
the correctly rounded (to nearest) value of e^x. */
|
|
double
|
|
SECTION
|
|
__ieee754_exp (double x)
|
|
{
|
|
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
|
|
mynumber junk1, junk2, binexp = {{0, 0}};
|
|
int4 i, j, m, n, ex;
|
|
double retval;
|
|
|
|
{
|
|
SET_RESTORE_ROUND (FE_TONEAREST);
|
|
|
|
junk1.x = x;
|
|
m = junk1.i[HIGH_HALF];
|
|
n = m & hugeint;
|
|
|
|
if (n > smallint && n < bigint)
|
|
{
|
|
y = x * log2e.x + three51.x;
|
|
bexp = y - three51.x; /* multiply the result by 2**bexp */
|
|
|
|
junk1.x = y;
|
|
|
|
eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */
|
|
t = x - bexp * ln_two1.x;
|
|
|
|
y = t + three33.x;
|
|
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
|
|
junk2.x = y;
|
|
del = (t - base) - eps; /* x = bexp*ln(2) + base + del */
|
|
eps = del + del * del * (p3.x * del + p2.x);
|
|
|
|
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
|
|
|
|
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
|
|
j = (junk2.i[LOW_HALF] & 511) << 1;
|
|
|
|
al = coar.x[i] * fine.x[j];
|
|
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
|
|
+ coar.x[i + 1] * fine.x[j + 1]);
|
|
|
|
rem = (bet + bet * eps) + al * eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (res == (res + cor * err_0))
|
|
{
|
|
retval = res * binexp.x;
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
retval = __slowexp (x);
|
|
goto ret;
|
|
} /*if error is over bound */
|
|
}
|
|
|
|
if (n <= smallint)
|
|
{
|
|
retval = 1.0;
|
|
goto ret;
|
|
}
|
|
|
|
if (n >= badint)
|
|
{
|
|
if (n > infint)
|
|
{
|
|
retval = x + x;
|
|
goto ret;
|
|
} /* x is NaN */
|
|
if (n < infint)
|
|
{
|
|
if (x > 0)
|
|
goto ret_huge;
|
|
else
|
|
goto ret_tiny;
|
|
}
|
|
/* x is finite, cause either overflow or underflow */
|
|
if (junk1.i[LOW_HALF] != 0)
|
|
{
|
|
retval = x + x;
|
|
goto ret;
|
|
} /* x is NaN */
|
|
retval = (x > 0) ? inf.x : zero; /* |x| = inf; return either inf or 0 */
|
|
goto ret;
|
|
}
|
|
|
|
y = x * log2e.x + three51.x;
|
|
bexp = y - three51.x;
|
|
junk1.x = y;
|
|
eps = bexp * ln_two2.x;
|
|
t = x - bexp * ln_two1.x;
|
|
y = t + three33.x;
|
|
base = y - three33.x;
|
|
junk2.x = y;
|
|
del = (t - base) - eps;
|
|
eps = del + del * del * (p3.x * del + p2.x);
|
|
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
|
|
j = (junk2.i[LOW_HALF] & 511) << 1;
|
|
al = coar.x[i] * fine.x[j];
|
|
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
|
|
+ coar.x[i + 1] * fine.x[j + 1]);
|
|
rem = (bet + bet * eps) + al * eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (m >> 31)
|
|
{
|
|
ex = junk1.i[LOW_HALF];
|
|
if (res < 1.0)
|
|
{
|
|
res += res;
|
|
cor += cor;
|
|
ex -= 1;
|
|
}
|
|
if (ex >= -1022)
|
|
{
|
|
binexp.i[HIGH_HALF] = (1023 + ex) << 20;
|
|
if (res == (res + cor * err_0))
|
|
{
|
|
retval = res * binexp.x;
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
retval = __slowexp (x);
|
|
goto check_uflow_ret;
|
|
} /*if error is over bound */
|
|
}
|
|
ex = -(1022 + ex);
|
|
binexp.i[HIGH_HALF] = (1023 - ex) << 20;
|
|
res *= binexp.x;
|
|
cor *= binexp.x;
|
|
eps = 1.0000000001 + err_0 * binexp.x;
|
|
t = 1.0 + res;
|
|
y = ((1.0 - t) + res) + cor;
|
|
res = t + y;
|
|
cor = (t - res) + y;
|
|
if (res == (res + eps * cor))
|
|
{
|
|
binexp.i[HIGH_HALF] = 0x00100000;
|
|
retval = (res - 1.0) * binexp.x;
|
|
goto check_uflow_ret;
|
|
}
|
|
else
|
|
{
|
|
retval = __slowexp (x);
|
|
goto check_uflow_ret;
|
|
} /* if error is over bound */
|
|
check_uflow_ret:
|
|
if (retval < DBL_MIN)
|
|
{
|
|
#if FLT_EVAL_METHOD != 0
|
|
volatile
|
|
#endif
|
|
double force_underflow = tiny * tiny;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
if (retval == 0)
|
|
goto ret_tiny;
|
|
goto ret;
|
|
}
|
|
else
|
|
{
|
|
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
|
|
if (res == (res + cor * err_0))
|
|
retval = res * binexp.x * t256.x;
|
|
else
|
|
retval = __slowexp (x);
|
|
if (isinf (retval))
|
|
goto ret_huge;
|
|
else
|
|
goto ret;
|
|
}
|
|
}
|
|
ret:
|
|
return retval;
|
|
|
|
ret_huge:
|
|
return hhuge * hhuge;
|
|
|
|
ret_tiny:
|
|
return tiny * tiny;
|
|
}
|
|
#ifndef __ieee754_exp
|
|
strong_alias (__ieee754_exp, __exp_finite)
|
|
#endif
|
|
|
|
/* Compute e^(x+xx). The routine also receives bound of error of previous
|
|
calculation. If after computing exp the error exceeds the allowed bounds,
|
|
the routine returns a non-positive number. Otherwise it returns the
|
|
computed result, which is always positive. */
|
|
double
|
|
SECTION
|
|
__exp1 (double x, double xx, double error)
|
|
{
|
|
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
|
|
mynumber junk1, junk2, binexp = {{0, 0}};
|
|
int4 i, j, m, n, ex;
|
|
|
|
junk1.x = x;
|
|
m = junk1.i[HIGH_HALF];
|
|
n = m & hugeint; /* no sign */
|
|
|
|
if (n > smallint && n < bigint)
|
|
{
|
|
y = x * log2e.x + three51.x;
|
|
bexp = y - three51.x; /* multiply the result by 2**bexp */
|
|
|
|
junk1.x = y;
|
|
|
|
eps = bexp * ln_two2.x; /* x = bexp*ln(2) + t - eps */
|
|
t = x - bexp * ln_two1.x;
|
|
|
|
y = t + three33.x;
|
|
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
|
|
junk2.x = y;
|
|
del = (t - base) + (xx - eps); /* x = bexp*ln(2) + base + del */
|
|
eps = del + del * del * (p3.x * del + p2.x);
|
|
|
|
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 1023) << 20;
|
|
|
|
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
|
|
j = (junk2.i[LOW_HALF] & 511) << 1;
|
|
|
|
al = coar.x[i] * fine.x[j];
|
|
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
|
|
+ coar.x[i + 1] * fine.x[j + 1]);
|
|
|
|
rem = (bet + bet * eps) + al * eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (res == (res + cor * (1.0 + error + err_1)))
|
|
return res * binexp.x;
|
|
else
|
|
return -10.0;
|
|
}
|
|
|
|
if (n <= smallint)
|
|
return 1.0; /* if x->0 e^x=1 */
|
|
|
|
if (n >= badint)
|
|
{
|
|
if (n > infint)
|
|
return (zero / zero); /* x is NaN, return invalid */
|
|
if (n < infint)
|
|
return ((x > 0) ? (hhuge * hhuge) : (tiny * tiny));
|
|
/* x is finite, cause either overflow or underflow */
|
|
if (junk1.i[LOW_HALF] != 0)
|
|
return (zero / zero); /* x is NaN */
|
|
return ((x > 0) ? inf.x : zero); /* |x| = inf; return either inf or 0 */
|
|
}
|
|
|
|
y = x * log2e.x + three51.x;
|
|
bexp = y - three51.x;
|
|
junk1.x = y;
|
|
eps = bexp * ln_two2.x;
|
|
t = x - bexp * ln_two1.x;
|
|
y = t + three33.x;
|
|
base = y - three33.x;
|
|
junk2.x = y;
|
|
del = (t - base) + (xx - eps);
|
|
eps = del + del * del * (p3.x * del + p2.x);
|
|
i = ((junk2.i[LOW_HALF] >> 8) & 0xfffffffe) + 356;
|
|
j = (junk2.i[LOW_HALF] & 511) << 1;
|
|
al = coar.x[i] * fine.x[j];
|
|
bet = ((coar.x[i] * fine.x[j + 1] + coar.x[i + 1] * fine.x[j])
|
|
+ coar.x[i + 1] * fine.x[j + 1]);
|
|
rem = (bet + bet * eps) + al * eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (m >> 31)
|
|
{
|
|
ex = junk1.i[LOW_HALF];
|
|
if (res < 1.0)
|
|
{
|
|
res += res;
|
|
cor += cor;
|
|
ex -= 1;
|
|
}
|
|
if (ex >= -1022)
|
|
{
|
|
binexp.i[HIGH_HALF] = (1023 + ex) << 20;
|
|
if (res == (res + cor * (1.0 + error + err_1)))
|
|
return res * binexp.x;
|
|
else
|
|
return -10.0;
|
|
}
|
|
ex = -(1022 + ex);
|
|
binexp.i[HIGH_HALF] = (1023 - ex) << 20;
|
|
res *= binexp.x;
|
|
cor *= binexp.x;
|
|
eps = 1.00000000001 + (error + err_1) * binexp.x;
|
|
t = 1.0 + res;
|
|
y = ((1.0 - t) + res) + cor;
|
|
res = t + y;
|
|
cor = (t - res) + y;
|
|
if (res == (res + eps * cor))
|
|
{
|
|
binexp.i[HIGH_HALF] = 0x00100000;
|
|
return (res - 1.0) * binexp.x;
|
|
}
|
|
else
|
|
return -10.0;
|
|
}
|
|
else
|
|
{
|
|
binexp.i[HIGH_HALF] = (junk1.i[LOW_HALF] + 767) << 20;
|
|
if (res == (res + cor * (1.0 + error + err_1)))
|
|
return res * binexp.x * t256.x;
|
|
else
|
|
return -10.0;
|
|
}
|
|
}
|