0e9be4db8f
which is more efficient on all targets.
155 lines
5.1 KiB
C
155 lines
5.1 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* Written by International Business Machines Corp.
|
|
* Copyright (C) 2001-2015 Free Software Foundation, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/************************************************************************/
|
|
/* MODULE_NAME: mpa.h */
|
|
/* */
|
|
/* FUNCTIONS: */
|
|
/* mcr */
|
|
/* acr */
|
|
/* cpy */
|
|
/* mp_dbl */
|
|
/* dbl_mp */
|
|
/* add */
|
|
/* sub */
|
|
/* mul */
|
|
/* dvd */
|
|
/* */
|
|
/* Arithmetic functions for multiple precision numbers. */
|
|
/* Common types and definition */
|
|
/************************************************************************/
|
|
|
|
#include <mpa-arch.h>
|
|
|
|
/* The mp_no structure holds the details of a multi-precision floating point
|
|
number.
|
|
|
|
- The radix of the number (R) is 2 ^ 24.
|
|
|
|
- E: The exponent of the number.
|
|
|
|
- D[0]: The sign (-1, 1) or 0 if the value is 0. In the latter case, the
|
|
values of the remaining members of the structure are ignored.
|
|
|
|
- D[1] - D[p]: The mantissa of the number where:
|
|
|
|
0 <= D[i] < R and
|
|
P is the precision of the number and 1 <= p <= 32
|
|
|
|
D[p+1] ... D[39] have no significance.
|
|
|
|
- The value of the number is:
|
|
|
|
D[1] * R ^ (E - 1) + D[2] * R ^ (E - 2) ... D[p] * R ^ (E - p)
|
|
|
|
*/
|
|
typedef struct
|
|
{
|
|
int e;
|
|
mantissa_t d[40];
|
|
} mp_no;
|
|
|
|
typedef union
|
|
{
|
|
int i[2];
|
|
double d;
|
|
} number;
|
|
|
|
extern const mp_no __mpone;
|
|
extern const mp_no __mptwo;
|
|
|
|
#define X x->d
|
|
#define Y y->d
|
|
#define Z z->d
|
|
#define EX x->e
|
|
#define EY y->e
|
|
#define EZ z->e
|
|
|
|
#ifndef RADIXI
|
|
# define RADIXI 0x1.0p-24 /* 2^-24 */
|
|
#endif
|
|
|
|
#ifndef TWO52
|
|
# define TWO52 0x1.0p52 /* 2^52 */
|
|
#endif
|
|
|
|
#define TWO5 TWOPOW (5) /* 2^5 */
|
|
#define TWO8 TWOPOW (8) /* 2^52 */
|
|
#define TWO10 TWOPOW (10) /* 2^10 */
|
|
#define TWO18 TWOPOW (18) /* 2^18 */
|
|
#define TWO19 TWOPOW (19) /* 2^19 */
|
|
#define TWO23 TWOPOW (23) /* 2^23 */
|
|
|
|
#define HALFRAD TWO23
|
|
|
|
#define TWO57 0x1.0p57 /* 2^57 */
|
|
#define TWO71 0x1.0p71 /* 2^71 */
|
|
#define TWOM1032 0x1.0p-1032 /* 2^-1032 */
|
|
#define TWOM1022 0x1.0p-1022 /* 2^-1022 */
|
|
|
|
#define HALF 0x1.0p-1 /* 1/2 */
|
|
#define MHALF -0x1.0p-1 /* -1/2 */
|
|
|
|
int __acr (const mp_no *, const mp_no *, int);
|
|
void __cpy (const mp_no *, mp_no *, int);
|
|
void __mp_dbl (const mp_no *, double *, int);
|
|
void __dbl_mp (double, mp_no *, int);
|
|
void __add (const mp_no *, const mp_no *, mp_no *, int);
|
|
void __sub (const mp_no *, const mp_no *, mp_no *, int);
|
|
void __mul (const mp_no *, const mp_no *, mp_no *, int);
|
|
void __sqr (const mp_no *, mp_no *, int);
|
|
void __dvd (const mp_no *, const mp_no *, mp_no *, int);
|
|
|
|
extern void __mpatan (mp_no *, mp_no *, int);
|
|
extern void __mpatan2 (mp_no *, mp_no *, mp_no *, int);
|
|
extern void __mpsqrt (mp_no *, mp_no *, int);
|
|
extern void __mpexp (mp_no *, mp_no *, int);
|
|
extern void __c32 (mp_no *, mp_no *, mp_no *, int);
|
|
extern int __mpranred (double, mp_no *, int);
|
|
|
|
/* Given a power POW, build a multiprecision number 2^POW. */
|
|
static inline void
|
|
__pow_mp (int pow, mp_no *y, int p)
|
|
{
|
|
int i, rem;
|
|
|
|
/* The exponent is E such that E is a factor of 2^24. The remainder (of the
|
|
form 2^x) goes entirely into the first digit of the mantissa as it is
|
|
always less than 2^24. */
|
|
EY = pow / 24;
|
|
rem = pow - EY * 24;
|
|
EY++;
|
|
|
|
/* If the remainder is negative, it means that POW was negative since
|
|
|EY * 24| <= |pow|. Adjust so that REM is positive and still less than
|
|
24 because of which, the mantissa digit is less than 2^24. */
|
|
if (rem < 0)
|
|
{
|
|
EY--;
|
|
rem += 24;
|
|
}
|
|
/* The sign of any 2^x is always positive. */
|
|
Y[0] = 1;
|
|
Y[1] = 1 << rem;
|
|
|
|
/* Everything else is 0. */
|
|
for (i = 2; i <= p; i++)
|
|
Y[i] = 0;
|
|
}
|