Joseph Myers c091488e51 Fix ldbl-128ibm powl overflow handling (bug 19674).
The ldbl-128ibm implementation of powl has some problems in the case
of overflow or underflow, which are mainly visible in non-default
rounding modes.

* When overflow or underflow is detected early, the correct sign of an
  overflowing or underflowing result is not allowed for.  This is
  mostly hidden in the default rounding mode by the errno-setting
  wrappers recomputing the result (except in non-default
  error-handling modes such as -lieee), but visible in other rounding
  modes where a result that is not zero or infinity causes the
  wrappers not to do the recomputation.

* The final scaling is done before the sign is incorporated in the
  result, but should be done afterwards for correct overflowing and
  underflowing results in directed rounding modes.

This patch fixes those problems.  Tested for powerpc.

	[BZ #19674]
	* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Include
	sign in overflowing and underflowing results when overflow or
	underflow is detected early.  Include sign in result before rather
	than after scaling.
2016-02-19 01:07:40 +00:00

416 lines
11 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Expansions and modifications for 128-bit long double are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* __ieee754_powl(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 113-53 = 60 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
*/
#include <math.h>
#include <math_private.h>
static const long double bp[] = {
1.0L,
1.5L,
};
/* log_2(1.5) */
static const long double dp_h[] = {
0.0,
5.8496250072115607565592654282227158546448E-1L
};
/* Low part of log_2(1.5) */
static const long double dp_l[] = {
0.0,
1.0579781240112554492329533686862998106046E-16L
};
static const long double zero = 0.0L,
one = 1.0L,
two = 2.0L,
two113 = 1.0384593717069655257060992658440192E34L,
huge = 1.0e300L,
tiny = 1.0e-300L;
/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
z = (x-1)/(x+1)
1 <= x <= 1.25
Peak relative error 2.3e-37 */
static const long double LN[] =
{
-3.0779177200290054398792536829702930623200E1L,
6.5135778082209159921251824580292116201640E1L,
-4.6312921812152436921591152809994014413540E1L,
1.2510208195629420304615674658258363295208E1L,
-9.9266909031921425609179910128531667336670E-1L
};
static const long double LD[] =
{
-5.129862866715009066465422805058933131960E1L,
1.452015077564081884387441590064272782044E2L,
-1.524043275549860505277434040464085593165E2L,
7.236063513651544224319663428634139768808E1L,
-1.494198912340228235853027849917095580053E1L
/* 1.0E0 */
};
/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
0 <= x <= 0.5
Peak relative error 5.7e-38 */
static const long double PN[] =
{
5.081801691915377692446852383385968225675E8L,
9.360895299872484512023336636427675327355E6L,
4.213701282274196030811629773097579432957E4L,
5.201006511142748908655720086041570288182E1L,
9.088368420359444263703202925095675982530E-3L,
};
static const long double PD[] =
{
3.049081015149226615468111430031590411682E9L,
1.069833887183886839966085436512368982758E8L,
8.259257717868875207333991924545445705394E5L,
1.872583833284143212651746812884298360922E3L,
/* 1.0E0 */
};
static const long double
/* ln 2 */
lg2 = 6.9314718055994530941723212145817656807550E-1L,
lg2_h = 6.9314718055994528622676398299518041312695E-1L,
lg2_l = 2.3190468138462996154948554638754786504121E-17L,
ovt = 8.0085662595372944372e-0017L,
/* 2/(3*log(2)) */
cp = 9.6179669392597560490661645400126142495110E-1L,
cp_h = 9.6179669392597555432899980587535537779331E-1L,
cp_l = 5.0577616648125906047157785230014751039424E-17L;
long double
__ieee754_powl (long double x, long double y)
{
long double z, ax, z_h, z_l, p_h, p_l;
long double y1, t1, t2, r, s, sgn, t, u, v, w;
long double s2, s_h, s_l, t_h, t_l, ay;
int32_t i, j, k, yisint, n;
uint32_t ix, iy;
int32_t hx, hy, hax;
double ohi, xhi, xlo, yhi, ylo;
uint32_t lx, ly, lj;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS (hx, lx, xhi);
ix = hx & 0x7fffffff;
ldbl_unpack (y, &yhi, &ylo);
EXTRACT_WORDS (hy, ly, yhi);
iy = hy & 0x7fffffff;
/* y==zero: x**0 = 1 */
if ((iy | ly) == 0)
return one;
/* 1.0**y = 1; -1.0**+-Inf = 1 */
if (x == one)
return one;
if (x == -1.0L && ((iy - 0x7ff00000) | ly) == 0)
return one;
/* +-NaN return x+y */
if ((ix >= 0x7ff00000 && ((ix - 0x7ff00000) | lx) != 0)
|| (iy >= 0x7ff00000 && ((iy - 0x7ff00000) | ly) != 0))
return x + y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if (hx < 0)
{
uint32_t low_ye;
GET_HIGH_WORD (low_ye, ylo);
if ((low_ye & 0x7fffffff) >= 0x43400000) /* Low part >= 2^53 */
yisint = 2; /* even integer y */
else if (iy >= 0x3ff00000) /* 1.0 */
{
if (__floorl (y) == y)
{
z = 0.5 * y;
if (__floorl (z) == z)
yisint = 2;
else
yisint = 1;
}
}
}
ax = fabsl (x);
/* special value of y */
if (ly == 0)
{
if (iy == 0x7ff00000) /* y is +-inf */
{
if (ax > one)
/* (|x|>1)**+-inf = inf,0 */
return (hy >= 0) ? y : zero;
else
/* (|x|<1)**-,+inf = inf,0 */
return (hy < 0) ? -y : zero;
}
if (ylo == 0.0)
{
if (iy == 0x3ff00000)
{ /* y is +-1 */
if (hy < 0)
return one / x;
else
return x;
}
if (hy == 0x40000000)
return x * x; /* y is 2 */
if (hy == 0x3fe00000)
{ /* y is 0.5 */
if (hx >= 0) /* x >= +0 */
return __ieee754_sqrtl (x);
}
}
}
/* special value of x */
if (lx == 0)
{
if (ix == 0x7ff00000 || ix == 0 || (ix == 0x3ff00000 && xlo == 0.0))
{
z = ax; /*x is +-0,+-inf,+-1 */
if (hy < 0)
z = one / z; /* z = (1/|x|) */
if (hx < 0)
{
if (((ix - 0x3ff00000) | yisint) == 0)
{
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
}
else if (yisint == 1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
/* (x<0)**(non-int) is NaN */
if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
return (x - x) / (x - x);
/* sgn (sign of result -ve**odd) = -1 else = 1 */
sgn = one;
if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
sgn = -one; /* (-ve)**(odd int) */
/* |y| is huge.
2^-16495 = 1/2 of smallest representable value.
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
if (iy > 0x41d654b0)
{
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
if (iy > 0x47d654b0)
{
if (ix <= 0x3fefffff)
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
if (ix >= 0x3ff00000)
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
}
/* over/underflow if x is not close to one */
if (ix < 0x3fefffff)
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
if (ix > 0x3ff00000)
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
}
ay = y > 0 ? y : -y;
if (ay < 0x1p-117)
y = y < 0 ? -0x1p-117 : 0x1p-117;
n = 0;
/* take care subnormal number */
if (ix < 0x00100000)
{
ax *= two113;
n -= 113;
ohi = ldbl_high (ax);
GET_HIGH_WORD (ix, ohi);
}
n += ((ix) >> 20) - 0x3ff;
j = ix & 0x000fffff;
/* determine interval */
ix = j | 0x3ff00000; /* normalize ix */
if (j <= 0x39880)
k = 0; /* |x|<sqrt(3/2) */
else if (j < 0xbb670)
k = 1; /* |x|<sqrt(3) */
else
{
k = 0;
n += 1;
ix -= 0x00100000;
}
ohi = ldbl_high (ax);
GET_HIGH_WORD (hax, ohi);
ax = __scalbnl (ax, ((int) ((ix - hax) * 2)) >> 21);
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one / (ax + bp[k]);
s = u * v;
s_h = ldbl_high (s);
/* t_h=ax+bp[k] High */
t_h = ax + bp[k];
t_h = ldbl_high (t_h);
t_l = ax - (t_h - bp[k]);
s_l = v * ((u - s_h * t_h) - s_h * t_l);
/* compute log(ax) */
s2 = s * s;
u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
r = s2 * s2 * u / v;
r += s_l * (s_h + s);
s2 = s_h * s_h;
t_h = 3.0 + s2 + r;
t_h = ldbl_high (t_h);
t_l = r - ((t_h - 3.0) - s2);
/* u+v = s*(1+...) */
u = s_h * t_h;
v = s_l * t_h + t_l * s;
/* 2/(3log2)*(s+...) */
p_h = u + v;
p_h = ldbl_high (p_h);
p_l = v - (p_h - u);
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l * p_h + p_l * cp + dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (long double) n;
t1 = (((z_h + z_l) + dp_h[k]) + t);
t1 = ldbl_high (t1);
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = ldbl_high (y);
p_l = (y - y1) * t1 + y * t2;
p_h = y1 * t1;
z = p_l + p_h;
ohi = ldbl_high (z);
EXTRACT_WORDS (j, lj, ohi);
if (j >= 0x40d00000) /* z >= 16384 */
{
/* if z > 16384 */
if (((j - 0x40d00000) | lj) != 0)
return sgn * huge * huge; /* overflow */
else
{
if (p_l + ovt > z - p_h)
return sgn * huge * huge; /* overflow */
}
}
else if ((j & 0x7fffffff) >= 0x40d01b90) /* z <= -16495 */
{
/* z < -16495 */
if (((j - 0xc0d01bc0) | lj) != 0)
return sgn * tiny * tiny; /* underflow */
else
{
if (p_l <= z - p_h)
return sgn * tiny * tiny; /* underflow */
}
}
/* compute 2**(p_h+p_l) */
i = j & 0x7fffffff;
k = (i >> 20) - 0x3ff;
n = 0;
if (i > 0x3fe00000)
{ /* if |z| > 0.5, set n = [z+0.5] */
n = __floorl (z + 0.5L);
t = n;
p_h -= t;
}
t = p_l + p_h;
t = ldbl_high (t);
u = t * lg2_h;
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
z = u + v;
w = v - (z - u);
/* exp(z) */
t = z * z;
u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
t1 = z - t * u / v;
r = (z * t1) / (t1 - two) - (w + z * w);
z = one - (r - z);
z = __scalbnl (sgn * z, n);
math_check_force_underflow (z);
return z;
}
strong_alias (__ieee754_powl, __powl_finite)