Joseph Myers 4629c866ad Fix atan / atan2 missing underflows (bug 15319).
This patch fixes bug 15319, missing underflows from atan / atan2 when
the result of atan is very close to its small argument (or that of
atan2 is very close to the ratio of its arguments, which may be an
exact division).

The usual approach of doing an underflowing computation if the
computed result is subnormal is followed.  For 32-bit x86, there are
extra complications: the inline __ieee754_atan2 in bits/mathinline.h
needs to be disabled for float and double because other libm functions
using it generally rely on getting proper underflow exceptions from
it, while the out-of-line functions have to remove excess range and
precision from the underflowing result so as to return an exact 0 in
the case where errno should be set for underflow to 0.  (The failures
I saw without that are similar to those Carlos reported for other
functions, where I haven't seen a response to
<https://sourceware.org/ml/libc-alpha/2015-01/msg00485.html>
confirming if my diagnosis is correct.  Arguably all libm functions
with float and double returns should remove excess range and
precision, but that's a separate matter.)

The x86_64 long double case reported in a comment in bug 15319 is not
a bug (it's an argument of LDBL_MIN, and x86_64 is an after-rounding
architecture so the correct IEEE result is not to raise underflow in
the given rounding mode, in addition to treating the result as an
exact LDBL_MIN being within the newly clarified documentation of
accuracy goals).  I'm presuming that the fpatan instruction can be
trusted to raise appropriate exceptions when the (long double) result
underflows (after rounding) and so no changes are needed for x86 /
x86_64 long double functions here; empirically this is the case for
the cases covered in the testsuite, on my system.

Tested for x86_64, x86, powerpc and mips64.  Only 32-bit x86 needs
ulps updates (for the changes to inlines meaning some functions no
longer get excess precision from their __ieee754_atan2* calls).

	[BZ #15319]
	* sysdeps/i386/fpu/e_atan2.S (dbl_min): New object.
	(MO): New macro.
	(__ieee754_atan2): For results with small absolute value, force
	underflow exception and remove excess range and precision from
	return value.
	* sysdeps/i386/fpu/e_atan2f.S (flt_min): New object.
	(MO): New macro.
	(__ieee754_atan2f): For results with small absolute value, force
	underflow exception and remove excess range and precision from
	return value.
	* sysdeps/i386/fpu/s_atan.S (dbl_min): New object.
	(MO): New macro.
	(__atan): For results with small absolute value, force underflow
	exception and remove excess range and precision from return value.
	* sysdeps/i386/fpu/s_atanf.S (flt_min): New object.
	(MO): New macro.
	(__atanf): For results with small absolute value, force underflow
	exception and remove excess range and precision from return value.
	* sysdeps/ieee754/dbl-64/e_atan2.c: Include <float.h> and
	<math.h>.
	(__ieee754_atan2): Force underflow exception for results with
	small absolute value.
	* sysdeps/ieee754/dbl-64/s_atan.c: Include <float.h> and
	<math_private.h>.
	(atan): Force underflow exception for results with small absolute
	value.
	* sysdeps/ieee754/flt-32/s_atanf.c: Include <float.h>.
	(__atanf): Force underflow exception for results with small
	absolute value.
	* sysdeps/ieee754/ldbl-128/s_atanl.c: Include <float.h> and
	<math.h>.
	(__atanl): Force underflow exception for results with small
	absolute value.
	* sysdeps/ieee754/ldbl-128ibm/s_atanl.c: Include <float.h>.
	(__atanl): Force underflow exception for results with small
	absolute value.
	* sysdeps/x86/fpu/bits/mathinline.h
	[!__SSE2_MATH__ && !__x86_64__ && __LIBC_INTERNAL_MATH_INLINES]
	(__ieee754_atan2): Only define inline for long double.
	* sysdeps/x86_64/fpu/multiarch/e_atan2.c
	[HAVE_FMA4_SUPPORT || HAVE_AVX_SUPPORT]: Include <math.h>.
	* math/auto-libm-test-in: Do not mark underflow exceptions as
	possibly missing for bug 15319.  Add more tests of atan2.
	* math/auto-libm-test-out: Regenerated.
	* math/libm-test.inc (casin_test_data): Do not mark underflow
	exceptions as possibly missing for bug 15319.
	(casinh_test_data): Likewise.
	* sysdeps/i386/fpu/libm-test-ulps: Update.
2015-02-18 21:10:49 +00:00

255 lines
8.2 KiB
C

/* s_atanl.c
*
* Inverse circular tangent for 128-bit long double precision
* (arctangent)
*
*
*
* SYNOPSIS:
*
* long double x, y, atanl();
*
* y = atanl( x );
*
*
*
* DESCRIPTION:
*
* Returns radian angle between -pi/2 and +pi/2 whose tangent is x.
*
* The function uses a rational approximation of the form
* t + t^3 P(t^2)/Q(t^2), optimized for |t| < 0.09375.
*
* The argument is reduced using the identity
* arctan x - arctan u = arctan ((x-u)/(1 + ux))
* and an 83-entry lookup table for arctan u, with u = 0, 1/8, ..., 10.25.
* Use of the table improves the execution speed of the routine.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -19, 19 4e5 1.7e-34 5.4e-35
*
*
* WARNING:
*
* This program uses integer operations on bit fields of floating-point
* numbers. It does not work with data structures other than the
* structure assumed.
*
*/
/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
#include <float.h>
#include <math.h>
#include <math_private.h>
#include <math_ldbl_opt.h>
/* arctan(k/8), k = 0, ..., 82 */
static const long double atantbl[84] = {
0.0000000000000000000000000000000000000000E0L,
1.2435499454676143503135484916387102557317E-1L, /* arctan(0.125) */
2.4497866312686415417208248121127581091414E-1L,
3.5877067027057222039592006392646049977698E-1L,
4.6364760900080611621425623146121440202854E-1L,
5.5859931534356243597150821640166127034645E-1L,
6.4350110879328438680280922871732263804151E-1L,
7.1882999962162450541701415152590465395142E-1L,
7.8539816339744830961566084581987572104929E-1L,
8.4415398611317100251784414827164750652594E-1L,
8.9605538457134395617480071802993782702458E-1L,
9.4200004037946366473793717053459358607166E-1L,
9.8279372324732906798571061101466601449688E-1L,
1.0191413442663497346383429170230636487744E0L,
1.0516502125483736674598673120862998296302E0L,
1.0808390005411683108871567292171998202703E0L,
1.1071487177940905030170654601785370400700E0L,
1.1309537439791604464709335155363278047493E0L,
1.1525719972156675180401498626127513797495E0L,
1.1722738811284763866005949441337046149712E0L,
1.1902899496825317329277337748293183376012E0L,
1.2068173702852525303955115800565576303133E0L,
1.2220253232109896370417417439225704908830E0L,
1.2360594894780819419094519711090786987027E0L,
1.2490457723982544258299170772810901230778E0L,
1.2610933822524404193139408812473357720101E0L,
1.2722973952087173412961937498224804940684E0L,
1.2827408797442707473628852511364955306249E0L,
1.2924966677897852679030914214070816845853E0L,
1.3016288340091961438047858503666855921414E0L,
1.3101939350475556342564376891719053122733E0L,
1.3182420510168370498593302023271362531155E0L,
1.3258176636680324650592392104284756311844E0L,
1.3329603993374458675538498697331558093700E0L,
1.3397056595989995393283037525895557411039E0L,
1.3460851583802539310489409282517796256512E0L,
1.3521273809209546571891479413898128509842E0L,
1.3578579772154994751124898859640585287459E0L,
1.3633001003596939542892985278250991189943E0L,
1.3684746984165928776366381936948529556191E0L,
1.3734007669450158608612719264449611486510E0L,
1.3780955681325110444536609641291551522494E0L,
1.3825748214901258580599674177685685125566E0L,
1.3868528702577214543289381097042486034883E0L,
1.3909428270024183486427686943836432060856E0L,
1.3948567013423687823948122092044222644895E0L,
1.3986055122719575950126700816114282335732E0L,
1.4021993871854670105330304794336492676944E0L,
1.4056476493802697809521934019958079881002E0L,
1.4089588955564736949699075250792569287156E0L,
1.4121410646084952153676136718584891599630E0L,
1.4152014988178669079462550975833894394929E0L,
1.4181469983996314594038603039700989523716E0L,
1.4209838702219992566633046424614466661176E0L,
1.4237179714064941189018190466107297503086E0L,
1.4263547484202526397918060597281265695725E0L,
1.4288992721907326964184700745371983590908E0L,
1.4313562697035588982240194668401779312122E0L,
1.4337301524847089866404719096698873648610E0L,
1.4360250423171655234964275337155008780675E0L,
1.4382447944982225979614042479354815855386E0L,
1.4403930189057632173997301031392126865694E0L,
1.4424730991091018200252920599377292525125E0L,
1.4444882097316563655148453598508037025938E0L,
1.4464413322481351841999668424758804165254E0L,
1.4483352693775551917970437843145232637695E0L,
1.4501726582147939000905940595923466567576E0L,
1.4519559822271314199339700039142990228105E0L,
1.4536875822280323362423034480994649820285E0L,
1.4553696664279718992423082296859928222270E0L,
1.4570043196511885530074841089245667532358E0L,
1.4585935117976422128825857356750737658039E0L,
1.4601391056210009726721818194296893361233E0L,
1.4616428638860188872060496086383008594310E0L,
1.4631064559620759326975975316301202111560E0L,
1.4645314639038178118428450961503371619177E0L,
1.4659193880646627234129855241049975398470E0L,
1.4672716522843522691530527207287398276197E0L,
1.4685896086876430842559640450619880951144E0L,
1.4698745421276027686510391411132998919794E0L,
1.4711276743037345918528755717617308518553E0L,
1.4723501675822635384916444186631899205983E0L,
1.4735431285433308455179928682541563973416E0L, /* arctan(10.25) */
1.5707963267948966192313216916397514420986E0L /* pi/2 */
};
/* arctan t = t + t^3 p(t^2) / q(t^2)
|t| <= 0.09375
peak relative error 5.3e-37 */
static const long double
p0 = -4.283708356338736809269381409828726405572E1L,
p1 = -8.636132499244548540964557273544599863825E1L,
p2 = -5.713554848244551350855604111031839613216E1L,
p3 = -1.371405711877433266573835355036413750118E1L,
p4 = -8.638214309119210906997318946650189640184E-1L,
q0 = 1.285112506901621042780814422948906537959E2L,
q1 = 3.361907253914337187957855834229672347089E2L,
q2 = 3.180448303864130128268191635189365331680E2L,
q3 = 1.307244136980865800160844625025280344686E2L,
q4 = 2.173623741810414221251136181221172551416E1L;
/* q5 = 1.000000000000000000000000000000000000000E0 */
long double
__atanl (long double x)
{
int32_t k, sign, lx;
long double t, u, p, q;
double xhi;
xhi = ldbl_high (x);
EXTRACT_WORDS (k, lx, xhi);
sign = k & 0x80000000;
/* Check for IEEE special cases. */
k &= 0x7fffffff;
if (k >= 0x7ff00000)
{
/* NaN. */
if (((k - 0x7ff00000) | lx) != 0)
return (x + x);
/* Infinity. */
if (sign)
return -atantbl[83];
else
return atantbl[83];
}
if (k <= 0x3c800000) /* |x| <= 2**-55. */
{
if (fabsl (x) < LDBL_MIN)
{
long double force_underflow = x * x;
math_force_eval (force_underflow);
}
/* Raise inexact. */
if (1e300L + x > 0.0)
return x;
}
if (k >= 0x46c00000) /* |x| >= 2**109. */
{
/* Saturate result to {-,+}pi/2. */
if (sign)
return -atantbl[83];
else
return atantbl[83];
}
if (sign)
x = -x;
if (k >= 0x40248000) /* 10.25 */
{
k = 83;
t = -1.0/x;
}
else
{
/* Index of nearest table element.
Roundoff to integer is asymmetrical to avoid cancellation when t < 0
(cf. fdlibm). */
k = 8.0 * x + 0.25;
u = 0.125 * k;
/* Small arctan argument. */
t = (x - u) / (1.0 + x * u);
}
/* Arctan of small argument t. */
u = t * t;
p = ((((p4 * u) + p3) * u + p2) * u + p1) * u + p0;
q = ((((u + q4) * u + q3) * u + q2) * u + q1) * u + q0;
u = t * u * p / q + t;
/* arctan x = arctan u + arctan t */
u = atantbl[k] + u;
if (sign)
return (-u);
else
return u;
}
long_double_symbol (libm, __atanl, atanl);