a2f0363f81
This adds new functions for futex operations, starting with wait, abstimed_wait, reltimed_wait, wake. They add documentation and error checking according to the current draft of the Linux kernel futex manpage. Waiting with absolute or relative timeouts is split into separate functions. This allows for removing a few cases of code duplication in pthreads code, which uses absolute timeouts; also, it allows us to put platform-specific code to go from an absolute to a relative timeout into the platform-specific futex abstractions.. Futex operations that can be canceled are also split out into separate functions suffixed by "_cancelable". There are separate versions for both Linux and NaCl; while they currently differ only slightly, my expectation is that the separate versions of lowlevellock-futex.h will eventually be merged into futex-internal.h when we get to move the lll_ functions over to the new futex API.
98 lines
3.2 KiB
C
98 lines
3.2 KiB
C
/* Copyright (C) 2003-2015 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Martin Schwidefsky <schwidefsky@de.ibm.com>, 2003.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <errno.h>
|
|
#include <sysdep.h>
|
|
#include <lowlevellock.h>
|
|
#include <pthreadP.h>
|
|
#include <sparc-nptl.h>
|
|
#include <futex-internal.h>
|
|
|
|
/* Wait on barrier. */
|
|
int
|
|
__pthread_barrier_wait (barrier)
|
|
pthread_barrier_t *barrier;
|
|
{
|
|
union sparc_pthread_barrier *ibarrier
|
|
= (union sparc_pthread_barrier *) barrier;
|
|
int result = 0;
|
|
int private = ibarrier->s.pshared ? LLL_SHARED : LLL_PRIVATE;
|
|
int futex_private = ibarrier->s.pshared ? FUTEX_SHARED : FUTEX_PRIVATE;
|
|
|
|
/* Make sure we are alone. */
|
|
lll_lock (ibarrier->b.lock, private);
|
|
|
|
/* One more arrival. */
|
|
--ibarrier->b.left;
|
|
|
|
/* Are these all? */
|
|
if (ibarrier->b.left == 0)
|
|
{
|
|
/* Yes. Increment the event counter to avoid invalid wake-ups and
|
|
tell the current waiters that it is their turn. */
|
|
++ibarrier->b.curr_event;
|
|
|
|
/* Wake up everybody. */
|
|
futex_wake (&ibarrier->b.curr_event, INT_MAX, futex_private);
|
|
|
|
/* This is the thread which finished the serialization. */
|
|
result = PTHREAD_BARRIER_SERIAL_THREAD;
|
|
}
|
|
else
|
|
{
|
|
/* The number of the event we are waiting for. The barrier's event
|
|
number must be bumped before we continue. */
|
|
unsigned int event = ibarrier->b.curr_event;
|
|
|
|
/* Before suspending, make the barrier available to others. */
|
|
lll_unlock (ibarrier->b.lock, private);
|
|
|
|
/* Wait for the event counter of the barrier to change. */
|
|
do
|
|
futex_wait_simple (&ibarrier->b.curr_event, event, futex_private);
|
|
while (event == ibarrier->b.curr_event);
|
|
}
|
|
|
|
/* Make sure the init_count is stored locally or in a register. */
|
|
unsigned int init_count = ibarrier->b.init_count;
|
|
|
|
/* If this was the last woken thread, unlock. */
|
|
if (__atomic_is_v9 || ibarrier->s.pshared == 0)
|
|
{
|
|
if (atomic_increment_val (&ibarrier->b.left) == init_count)
|
|
/* We are done. */
|
|
lll_unlock (ibarrier->b.lock, private);
|
|
}
|
|
else
|
|
{
|
|
unsigned int left;
|
|
/* Slightly more complicated. On pre-v9 CPUs, atomic_increment_val
|
|
is only atomic for threads within the same process, not for
|
|
multiple processes. */
|
|
__sparc32_atomic_do_lock24 (&ibarrier->s.left_lock);
|
|
left = ++ibarrier->b.left;
|
|
__sparc32_atomic_do_unlock24 (&ibarrier->s.left_lock);
|
|
if (left == init_count)
|
|
/* We are done. */
|
|
lll_unlock (ibarrier->b.lock, private);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
weak_alias (__pthread_barrier_wait, pthread_barrier_wait)
|