Ulrich Drepper 3bb266e010 Update.
* sysdeps/alpha/fpu/fsetexcptflg.c: Avoid -Wparentheses warning. 
 
	* sysdeps/libm-ieee754/s_expm1.c (__expm1): Avoid -Wparentheses 
	warning. 
	* sysdeps/libm-ieee754/s_log1p.c (__log1p): Likewise. 
	* sysdeps/libm-ieee754/e_logf.c (__ieee754_logf): Likewise. 
	* sysdeps/libm-ieee754/s_expm1f.c (__expm1f): Likewise. 
	* sysdeps/libm-ieee754/e_log.c (__ieee754_log): Likewise. 
	* sysdeps/libm-ieee754/s_log1pf.c (__log1pf): Likewise. 

1998-12-13  Andreas Jaeger  <aj@arthur.rhein-neckar.de>
1998-12-13 12:14:18 +00:00

166 lines
4.9 KiB
C

/* @(#)e_log.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
for performance improvement on pipelined processors.
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
#endif
/* __ieee754_log(x)
* Return the logarithm of x
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "math.h"
#include "math_private.h"
#define half Lg[8]
#define two Lg[9]
#ifdef __STDC__
static const double
#else
static double
#endif
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
Lg[] = {0.0,
6.666666666666735130e-01, /* 3FE55555 55555593 */
3.999999999940941908e-01, /* 3FD99999 9997FA04 */
2.857142874366239149e-01, /* 3FD24924 94229359 */
2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
1.818357216161805012e-01, /* 3FC74664 96CB03DE */
1.531383769920937332e-01, /* 3FC39A09 D078C69F */
1.479819860511658591e-01, /* 3FC2F112 DF3E5244 */
0.5,
2.0};
#ifdef __STDC__
static const double zero = 0.0;
#else
static double zero = 0.0;
#endif
#ifdef __STDC__
double __ieee754_log(double x)
#else
double __ieee754_log(x)
double x;
#endif
{
double hfsq,f,s,z,R,w,dk,t11,t12,t21,t22,w2,zw2;
#ifdef DO_NOT_USE_THIS
double t1,t2;
#endif
int32_t k,hx,i,j;
u_int32_t lx;
EXTRACT_WORDS(hx,lx,x);
k=0;
if (hx < 0x00100000) { /* x < 2**-1022 */
if (((hx&0x7fffffff)|lx)==0)
return -two54/(x-x); /* log(+-0)=-inf */
if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */
k -= 54; x *= two54; /* subnormal number, scale up x */
GET_HIGH_WORD(hx,x);
}
if (hx >= 0x7ff00000) return x+x;
k += (hx>>20)-1023;
hx &= 0x000fffff;
i = (hx+0x95f64)&0x100000;
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
k += (i>>20);
f = x-1.0;
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
if(f==zero) {
if(k==0) return zero; else {dk=(double)k;
return dk*ln2_hi+dk*ln2_lo;}
}
R = f*f*(half-0.33333333333333333*f);
if(k==0) return f-R; else {dk=(double)k;
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
}
s = f/(two+f);
dk = (double)k;
z = s*s;
i = hx-0x6147a;
w = z*z;
j = 0x6b851-hx;
#ifdef DO_NOT_USE_THIS
t1= w*(Lg2+w*(Lg4+w*Lg6));
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
R = t2+t1;
#else
t21 = Lg[5]+w*Lg[7]; w2=w*w;
t22 = Lg[1]+w*Lg[3]; zw2=z*w2;
t11 = Lg[4]+w*Lg[6];
t12 = w*Lg[2];
R = t12 + w2*t11 + z*t22 + zw2*t21;
#endif
i |= j;
if(i>0) {
hfsq=0.5*f*f;
if(k==0) return f-(hfsq-s*(hfsq+R)); else
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
} else {
if(k==0) return f-s*(f-R); else
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
}
}