c6c6dd4803
* manual/contrib.texi: Removed licenses, added acknowledgements for contributions by Intel, IBM, Craig Metz. * LICENSES: New file, contains the text of all non-FSF licenses in the distribution that require putting the notice in the accompanying documentation. * README.template, README: Mention LICENSES. * sysdeps/mach/hurd/net/if_ppp.h: Replaced CMU license with a new one modelled on the modern BSD license, per recent letter of permission from CMU. * sysdeps/unix/sysv/linux/net/if_ppp.h: Likewise. * sysdeps/ieee754/dbl-64/MathLib.h: Changed the copyright holder from IBM to FSF, per the recent Software Letter. Changed the distribution terms from GPL to LGPL. * sysdeps/ieee754/dbl-64/asincos.tbl: Added FSF copyright and copying permission notice (Lesser GPL), per recent IBM Software Letter. * sysdeps/ieee754/dbl-64/powtwo.tbl: Likewise. * sysdeps/ieee754/dbl-64/root.tbl: Likewise. * sysdeps/ieee754/dbl-64/sincos.tbl: Likewise. * sysdeps/ieee754/dbl-64/uatan.tbl: Likewise. * sysdeps/ieee754/dbl-64/uexp.tbl: Likewise. * sysdeps/ieee754/dbl-64/ulog.tbl: Likewise. * sysdeps/ieee754/dbl-64/upow.tbl: Likewise. * sysdeps/ieee754/dbl-64/utan.tbl: Likewise. * sysdeps/ieee754/dbl-64/atnat.h: Changed the copyright holder from IBM to FSF, per the recent Software Letter. Corrected the text of the copying permission notice to say Lesser GPL instead of GPL in warranty disclaimer paragraph. * sysdeps/ieee754/dbl-64/atnat2.h: Likewise. * sysdeps/ieee754/dbl-64/branred.h: Likewise. * sysdeps/ieee754/dbl-64/dla.h: Likewise. * sysdeps/ieee754/dbl-64/doasin.h: Likewise. * sysdeps/ieee754/dbl-64/dosincos.h: Likewise. * sysdeps/ieee754/dbl-64/mpa.h: Likewise. * sysdeps/ieee754/dbl-64/mpa2.h: Likewise. * sysdeps/ieee754/dbl-64/mpatan.h: Likewise. * sysdeps/ieee754/dbl-64/mpexp.h: Likewise. * sysdeps/ieee754/dbl-64/mplog.h: Likewise. * sysdeps/ieee754/dbl-64/mpsqrt.h: Likewise. * sysdeps/ieee754/dbl-64/mydefs.h: Likewise. * sysdeps/ieee754/dbl-64/sincos32.h: Likewise. * sysdeps/ieee754/dbl-64/uasncs.h: Likewise. * sysdeps/ieee754/dbl-64/uexp.h: Likewise. * sysdeps/ieee754/dbl-64/ulog.h: Likewise. * sysdeps/ieee754/dbl-64/upow.h: Likewise. * sysdeps/ieee754/dbl-64/urem.h: Likewise. * sysdeps/ieee754/dbl-64/uroot.h: Likewise. * sysdeps/ieee754/dbl-64/usncs.h: Likewise. * sysdeps/ieee754/dbl-64/utan.h: Likewise. * sysdeps/ieee754/dbl-64/branred.c: Corrected the text of the copying permission notice to say Lesser GPL instead of GPL in warranty disclaimer paragraph. * sysdeps/ieee754/dbl-64/doasin.c: Likewise. * sysdeps/ieee754/dbl-64/dosincos.c: Likewise. * sysdeps/ieee754/dbl-64/e_asin.c: Likewise. * sysdeps/ieee754/dbl-64/e_atan2.c: Likewise. * sysdeps/ieee754/dbl-64/e_exp.c: Likewise. * sysdeps/ieee754/dbl-64/e_log.c: Likewise. * sysdeps/ieee754/dbl-64/e_pow.c: Likewise. * sysdeps/ieee754/dbl-64/e_remainder.c: Likewise. * sysdeps/ieee754/dbl-64/e_sqrt.c: Likewise. * sysdeps/ieee754/dbl-64/halfulp.c: Likewise. * sysdeps/ieee754/dbl-64/mpa.c: Likewise. * sysdeps/ieee754/dbl-64/mpatan.c: Likewise. * sysdeps/ieee754/dbl-64/mpatan2.c: Likewise. * sysdeps/ieee754/dbl-64/mpexp.c: Likewise. * sysdeps/ieee754/dbl-64/mplog.c: Likewise. * sysdeps/ieee754/dbl-64/mpsqrt.c: Likewise. * sysdeps/ieee754/dbl-64/mptan.c: Likewise. * sysdeps/ieee754/dbl-64/s_atan.c: Likewise. * sysdeps/ieee754/dbl-64/s_sin.c: Likewise. * sysdeps/ieee754/dbl-64/s_tan.c: Likewise. * sysdeps/ieee754/dbl-64/sincos32.c: Likewise. * sysdeps/ieee754/dbl-64/slowexp.c: Likewise. * sysdeps/ieee754/dbl-64/slowpow.c: Likewise.
253 lines
8.7 KiB
C
253 lines
8.7 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001 Free Software Foundation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
/***************************************************************************/
|
|
/* MODULE_NAME:uexp.c */
|
|
/* */
|
|
/* FUNCTION:uexp */
|
|
/* exp1 */
|
|
/* */
|
|
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h uexp.h */
|
|
/* mpa.c mpexp.x slowexp.c */
|
|
/* */
|
|
/* An ultimate exp routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of e^x */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/***************************************************************************/
|
|
|
|
#include "endian.h"
|
|
#include "uexp.h"
|
|
#include "mydefs.h"
|
|
#include "MathLib.h"
|
|
#include "uexp.tbl"
|
|
#include "math_private.h"
|
|
|
|
double __slowexp(double);
|
|
|
|
/***************************************************************************/
|
|
/* An ultimate exp routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of e^x */
|
|
/***************************************************************************/
|
|
double __ieee754_exp(double x) {
|
|
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
|
|
mynumber junk1, junk2, binexp = {{0,0}};
|
|
#if 0
|
|
int4 k;
|
|
#endif
|
|
int4 i,j,m,n,ex;
|
|
|
|
junk1.x = x;
|
|
m = junk1.i[HIGH_HALF];
|
|
n = m&hugeint;
|
|
|
|
if (n > smallint && n < bigint) {
|
|
|
|
y = x*log2e.x + three51.x;
|
|
bexp = y - three51.x; /* multiply the result by 2**bexp */
|
|
|
|
junk1.x = y;
|
|
|
|
eps = bexp*ln_two2.x; /* x = bexp*ln(2) + t - eps */
|
|
t = x - bexp*ln_two1.x;
|
|
|
|
y = t + three33.x;
|
|
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
|
|
junk2.x = y;
|
|
del = (t - base) - eps; /* x = bexp*ln(2) + base + del */
|
|
eps = del + del*del*(p3.x*del + p2.x);
|
|
|
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+1023)<<20;
|
|
|
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
|
|
|
al = coar.x[i]*fine.x[j];
|
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
|
|
|
rem=(bet + bet*eps)+al*eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (res == (res+cor*err_0)) return res*binexp.x;
|
|
else return __slowexp(x); /*if error is over bound */
|
|
}
|
|
|
|
if (n <= smallint) return 1.0;
|
|
|
|
if (n >= badint) {
|
|
if (n > infint) return(zero/zero); /* x is NaN, return invalid */
|
|
if (n < infint) return ( (x>0) ? (hhuge*hhuge) : (tiny*tiny) );
|
|
/* x is finite, cause either overflow or underflow */
|
|
if (junk1.i[LOW_HALF] != 0) return (zero/zero); /* x is NaN */
|
|
return ((x>0)?inf.x:zero ); /* |x| = inf; return either inf or 0 */
|
|
}
|
|
|
|
y = x*log2e.x + three51.x;
|
|
bexp = y - three51.x;
|
|
junk1.x = y;
|
|
eps = bexp*ln_two2.x;
|
|
t = x - bexp*ln_two1.x;
|
|
y = t + three33.x;
|
|
base = y - three33.x;
|
|
junk2.x = y;
|
|
del = (t - base) - eps;
|
|
eps = del + del*del*(p3.x*del + p2.x);
|
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
|
al = coar.x[i]*fine.x[j];
|
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
|
rem=(bet + bet*eps)+al*eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (m>>31) {
|
|
ex=junk1.i[LOW_HALF];
|
|
if (res < 1.0) {res+=res; cor+=cor; ex-=1;}
|
|
if (ex >=-1022) {
|
|
binexp.i[HIGH_HALF] = (1023+ex)<<20;
|
|
if (res == (res+cor*err_0)) return res*binexp.x;
|
|
else return __slowexp(x); /*if error is over bound */
|
|
}
|
|
ex = -(1022+ex);
|
|
binexp.i[HIGH_HALF] = (1023-ex)<<20;
|
|
res*=binexp.x;
|
|
cor*=binexp.x;
|
|
eps=1.0000000001+err_0*binexp.x;
|
|
t=1.0+res;
|
|
y = ((1.0-t)+res)+cor;
|
|
res=t+y;
|
|
cor = (t-res)+y;
|
|
if (res == (res + eps*cor))
|
|
{ binexp.i[HIGH_HALF] = 0x00100000;
|
|
return (res-1.0)*binexp.x;
|
|
}
|
|
else return __slowexp(x); /* if error is over bound */
|
|
}
|
|
else {
|
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+767)<<20;
|
|
if (res == (res+cor*err_0)) return res*binexp.x*t256.x;
|
|
else return __slowexp(x);
|
|
}
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* Compute e^(x+xx)(Double-Length number) .The routine also receive */
|
|
/* bound of error of previous calculation .If after computing exp */
|
|
/* error bigger than allows routine return non positive number */
|
|
/*else return e^(x + xx) (always positive ) */
|
|
/************************************************************************/
|
|
|
|
double __exp1(double x, double xx, double error) {
|
|
double bexp, t, eps, del, base, y, al, bet, res, rem, cor;
|
|
mynumber junk1, junk2, binexp = {{0,0}};
|
|
#if 0
|
|
int4 k;
|
|
#endif
|
|
int4 i,j,m,n,ex;
|
|
|
|
junk1.x = x;
|
|
m = junk1.i[HIGH_HALF];
|
|
n = m&hugeint; /* no sign */
|
|
|
|
if (n > smallint && n < bigint) {
|
|
y = x*log2e.x + three51.x;
|
|
bexp = y - three51.x; /* multiply the result by 2**bexp */
|
|
|
|
junk1.x = y;
|
|
|
|
eps = bexp*ln_two2.x; /* x = bexp*ln(2) + t - eps */
|
|
t = x - bexp*ln_two1.x;
|
|
|
|
y = t + three33.x;
|
|
base = y - three33.x; /* t rounded to a multiple of 2**-18 */
|
|
junk2.x = y;
|
|
del = (t - base) + (xx-eps); /* x = bexp*ln(2) + base + del */
|
|
eps = del + del*del*(p3.x*del + p2.x);
|
|
|
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+1023)<<20;
|
|
|
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
|
|
|
al = coar.x[i]*fine.x[j];
|
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
|
|
|
rem=(bet + bet*eps)+al*eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (res == (res+cor*(1.0+error+err_1))) return res*binexp.x;
|
|
else return -10.0;
|
|
}
|
|
|
|
if (n <= smallint) return 1.0; /* if x->0 e^x=1 */
|
|
|
|
if (n >= badint) {
|
|
if (n > infint) return(zero/zero); /* x is NaN, return invalid */
|
|
if (n < infint) return ( (x>0) ? (hhuge*hhuge) : (tiny*tiny) );
|
|
/* x is finite, cause either overflow or underflow */
|
|
if (junk1.i[LOW_HALF] != 0) return (zero/zero); /* x is NaN */
|
|
return ((x>0)?inf.x:zero ); /* |x| = inf; return either inf or 0 */
|
|
}
|
|
|
|
y = x*log2e.x + three51.x;
|
|
bexp = y - three51.x;
|
|
junk1.x = y;
|
|
eps = bexp*ln_two2.x;
|
|
t = x - bexp*ln_two1.x;
|
|
y = t + three33.x;
|
|
base = y - three33.x;
|
|
junk2.x = y;
|
|
del = (t - base) + (xx-eps);
|
|
eps = del + del*del*(p3.x*del + p2.x);
|
|
i = ((junk2.i[LOW_HALF]>>8)&0xfffffffe)+356;
|
|
j = (junk2.i[LOW_HALF]&511)<<1;
|
|
al = coar.x[i]*fine.x[j];
|
|
bet =(coar.x[i]*fine.x[j+1] + coar.x[i+1]*fine.x[j]) + coar.x[i+1]*fine.x[j+1];
|
|
rem=(bet + bet*eps)+al*eps;
|
|
res = al + rem;
|
|
cor = (al - res) + rem;
|
|
if (m>>31) {
|
|
ex=junk1.i[LOW_HALF];
|
|
if (res < 1.0) {res+=res; cor+=cor; ex-=1;}
|
|
if (ex >=-1022) {
|
|
binexp.i[HIGH_HALF] = (1023+ex)<<20;
|
|
if (res == (res+cor*(1.0+error+err_1))) return res*binexp.x;
|
|
else return -10.0;
|
|
}
|
|
ex = -(1022+ex);
|
|
binexp.i[HIGH_HALF] = (1023-ex)<<20;
|
|
res*=binexp.x;
|
|
cor*=binexp.x;
|
|
eps=1.00000000001+(error+err_1)*binexp.x;
|
|
t=1.0+res;
|
|
y = ((1.0-t)+res)+cor;
|
|
res=t+y;
|
|
cor = (t-res)+y;
|
|
if (res == (res + eps*cor))
|
|
{binexp.i[HIGH_HALF] = 0x00100000; return (res-1.0)*binexp.x;}
|
|
else return -10.0;
|
|
}
|
|
else {
|
|
binexp.i[HIGH_HALF] =(junk1.i[LOW_HALF]+767)<<20;
|
|
if (res == (res+cor*(1.0+error+err_1)))
|
|
return res*binexp.x*t256.x;
|
|
else return -10.0;
|
|
}
|
|
}
|