Joseph Myers d96164c330 Refactor code forcing underflow exceptions.
Various floating-point functions have code to force underflow
exceptions if a tiny result was computed in a way that might not have
resulted in such exceptions even though the result is inexact.  This
typically uses math_force_eval to ensure that the underflowing
expression is evaluated, but sometimes uses volatile.

This patch refactors such code to use three new macros
math_check_force_underflow, math_check_force_underflow_nonneg and
math_check_force_underflow_complex (which in turn use
math_force_eval).  In the limited number of cases not suited to a
simple conversion to these macros, existing uses of volatile are
changed to use math_force_eval instead.  The converted code does not
always execute exactly the same sequence of operations as the original
code, but the overall effects should be the same.

Tested for x86_64, x86, mips64 and powerpc.

	* sysdeps/generic/math_private.h (fabs_tg): New macro.
	(min_of_type): Likewise.
	(math_check_force_underflow): Likewise.
	(math_check_force_underflow_nonneg): Likewise.
	(math_check_force_underflow_complex): Likewise.
	* math/e_exp2l.c (__ieee754_exp2l): Use
	math_check_force_underflow_nonneg.
	* math/k_casinh.c (__kernel_casinh): Likewise.
	* math/k_casinhf.c (__kernel_casinhf): Likewise.
	* math/k_casinhl.c (__kernel_casinhl): Likewise.
	* math/s_catan.c (__catan): Use
	math_check_force_underflow_complex.
	* math/s_catanf.c (__catanf): Likewise.
	* math/s_catanh.c (__catanh): Likewise.
	* math/s_catanhf.c (__catanhf): Likewise.
	* math/s_catanhl.c (__catanhl): Likewise.
	* math/s_catanl.c (__catanl): Likewise.
	* math/s_ccosh.c (__ccosh): Likewise.
	* math/s_ccoshf.c (__ccoshf): Likewise.
	* math/s_ccoshl.c (__ccoshl): Likewise.
	* math/s_cexp.c (__cexp): Likewise.
	* math/s_cexpf.c (__cexpf): Likewise.
	* math/s_cexpl.c (__cexpl): Likewise.
	* math/s_clog.c (__clog): Use math_check_force_underflow_nonneg.
	* math/s_clog10.c (__clog10): Likewise.
	* math/s_clog10f.c (__clog10f): Likewise.
	* math/s_clog10l.c (__clog10l): Likewise.
	* math/s_clogf.c (__clogf): Likewise.
	* math/s_clogl.c (__clogl): Likewise.
	* math/s_csin.c (__csin): Use math_check_force_underflow_complex.
	* math/s_csinf.c (__csinf): Likewise.
	* math/s_csinh.c (__csinh): Likewise.
	* math/s_csinhf.c (__csinhf): Likewise.
	* math/s_csinhl.c (__csinhl): Likewise.
	* math/s_csinl.c (__csinl): Likewise.
	* math/s_csqrt.c (__csqrt): Use math_check_force_underflow.
	* math/s_csqrtf.c (__csqrtf): Likewise.
	* math/s_csqrtl.c (__csqrtl): Likewise.
	* math/s_ctan.c (__ctan): Use math_check_force_underflow_complex.
	* math/s_ctanf.c (__ctanf): Likewise.
	* math/s_ctanh.c (__ctanh): Likewise.
	* math/s_ctanhf.c (__ctanhf): Likewise.
	* math/s_ctanhl.c (__ctanhl): Likewise.
	* math/s_ctanl.c (__ctanl): Likewise.
	* stdlib/strtod_l.c (round_and_return): Use math_force_eval
	instead of volatile.
	* sysdeps/ieee754/dbl-64/e_asin.c (__ieee754_asin): Use
	math_check_force_underflow.
	* sysdeps/ieee754/dbl-64/e_atanh.c (__ieee754_atanh): Likewise.
	* sysdeps/ieee754/dbl-64/e_exp.c (__ieee754_exp): Do not use
	volatile when forcing underflow.
	* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Use
	math_check_force_underflow_nonneg.
	* sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r):
	Likewise.
	* sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Use
	math_check_force_underflow.
	* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
	* sysdeps/ieee754/dbl-64/e_sinh.c (__ieee754_sinh): Likewise.
	* sysdeps/ieee754/dbl-64/s_asinh.c (__asinh): Likewise.
	* sysdeps/ieee754/dbl-64/s_atan.c (atan): Use
	math_check_force_underflow_nonneg.
	* sysdeps/ieee754/dbl-64/s_erf.c (__erf): Use
	math_check_force_underflow.
	* sysdeps/ieee754/dbl-64/s_expm1.c (__expm1): Likewise.
	* sysdeps/ieee754/dbl-64/s_fma.c (__fma): Use math_force_eval
	instead of volatile.
	* sysdeps/ieee754/dbl-64/s_log1p.c (__log1p): Use
	math_check_force_underflow.
	* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Likewise.
	* sysdeps/ieee754/dbl-64/s_tan.c (tan): Use
	math_check_force_underflow_nonneg.
	* sysdeps/ieee754/dbl-64/s_tanh.c (__tanh): Use
	math_check_force_underflow.
	* sysdeps/ieee754/flt-32/e_asinf.c (__ieee754_asinf): Likewise.
	* sysdeps/ieee754/flt-32/e_atanhf.c (__ieee754_atanhf): Likewise.
	* sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Use
	math_check_force_underflow_nonneg.
	* sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r):
	Likewise.
	* sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Use
	math_check_force_underflow.
	* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
	* sysdeps/ieee754/flt-32/e_sinhf.c (__ieee754_sinhf): Likewise.
	* sysdeps/ieee754/flt-32/k_sinf.c (__kernel_sinf): Likewise.
	* sysdeps/ieee754/flt-32/k_tanf.c (__kernel_tanf): Likewise.
	* sysdeps/ieee754/flt-32/s_asinhf.c (__asinhf): Likewise.
	* sysdeps/ieee754/flt-32/s_atanf.c (__atanf): Likewise.
	* sysdeps/ieee754/flt-32/s_erff.c (__erff): Likewise.
	* sysdeps/ieee754/flt-32/s_expm1f.c (__expm1f): Likewise.
	* sysdeps/ieee754/flt-32/s_log1pf.c (__log1pf): Likewise.
	* sysdeps/ieee754/flt-32/s_tanhf.c (__tanhf): Likewise.
	* sysdeps/ieee754/ldbl-128/e_asinl.c (__ieee754_asinl): Likewise.
	* sysdeps/ieee754/ldbl-128/e_atanhl.c (__ieee754_atanhl):
	Likewise.
	* sysdeps/ieee754/ldbl-128/e_expl.c (__ieee754_expl): Use
	math_check_force_underflow_nonneg.
	* sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Use
	math_check_force_underflow.
	* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
	* sysdeps/ieee754/ldbl-128/e_sinhl.c (__ieee754_sinhl): Likewise.
	* sysdeps/ieee754/ldbl-128/k_sincosl.c (__kernel_sincosl):
	Likewise.
	* sysdeps/ieee754/ldbl-128/k_sinl.c (__kernel_sinl): Likewise.
	* sysdeps/ieee754/ldbl-128/k_tanl.c (__kernel_tanl): Likewise.
	* sysdeps/ieee754/ldbl-128/s_asinhl.c (__asinhl): Likewise.
	* sysdeps/ieee754/ldbl-128/s_atanl.c (__atanl): Likewise.
	* sysdeps/ieee754/ldbl-128/s_erfl.c (__erfl): Likewise.
	* sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128/s_fmal.c (__fmal): Use math_force_eval
	instead of volatile.
	* sysdeps/ieee754/ldbl-128/s_log1pl.c (__log1pl): Use
	math_check_force_underflow.
	* sysdeps/ieee754/ldbl-128/s_tanhl.c (__tanhl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_asinl.c (__ieee754_asinl): Use
	math_check_force_underflow.
	* sysdeps/ieee754/ldbl-128ibm/e_atanhl.c (__ieee754_atanhl):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
	Use math_check_force_underflow_nonneg.
	* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Use
	math_check_force_underflow.
	* sysdeps/ieee754/ldbl-128ibm/e_sinhl.c (__ieee754_sinhl):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/k_sincosl.c (__kernel_sincosl):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/k_sinl.c (__kernel_sinl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/k_tanl.c (__kernel_tanl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_asinhl.c (__asinhl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_atanl.c (__atanl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_erfl.c (__erfl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Likewise.
	* sysdeps/ieee754/ldbl-96/e_asinl.c (__ieee754_asinl): Likewise.
	* sysdeps/ieee754/ldbl-96/e_atanhl.c (__ieee754_atanhl): Likewise.
	* sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r): Use
	math_check_force_underflow_nonneg.
	* sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Use
	math_check_force_underflow.
	* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
	* sysdeps/ieee754/ldbl-96/e_sinhl.c (__ieee754_sinhl): Likewise.
	* sysdeps/ieee754/ldbl-96/k_sinl.c (__kernel_sinl): Likewise.
	* sysdeps/ieee754/ldbl-96/k_tanl.c (__kernel_tanl): Use
	math_check_force_underflow_nonneg.
	* sysdeps/ieee754/ldbl-96/s_asinhl.c (__asinhl): Use
	math_check_force_underflow.
	* sysdeps/ieee754/ldbl-96/s_erfl.c (__erfl): Likewise.
	* sysdeps/ieee754/ldbl-96/s_fmal.c (__fmal): Use math_force_eval
	instead of volatile.
	* sysdeps/ieee754/ldbl-96/s_tanhl.c (__tanhl): Use
	math_check_force_underflow.
2015-09-23 22:42:30 +00:00

849 lines
22 KiB
C

/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001-2015 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************************************/
/* MODULE_NAME: utan.c */
/* */
/* FUNCTIONS: utan */
/* tanMp */
/* */
/* FILES NEEDED:dla.h endian.h mpa.h mydefs.h utan.h */
/* branred.c sincos32.c mptan.c */
/* utan.tbl */
/* */
/* An ultimate tan routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of tan(x). */
/* Assumption: Machine arithmetic operations are performed in */
/* round to nearest mode of IEEE 754 standard. */
/* */
/*********************************************************************/
#include <errno.h>
#include <float.h>
#include "endian.h"
#include <dla.h>
#include "mpa.h"
#include "MathLib.h"
#include <math.h>
#include <math_private.h>
#include <fenv.h>
#include <stap-probe.h>
#ifndef SECTION
# define SECTION
#endif
static double tanMp (double);
void __mptan (double, mp_no *, int);
double
SECTION
tan (double x)
{
#include "utan.h"
#include "utan.tbl"
int ux, i, n;
double a, da, a2, b, db, c, dc, c1, cc1, c2, cc2, c3, cc3, fi, ffi, gi, pz,
s, sy, t, t1, t2, t3, t4, t7, t8, t9, t10, w, x2, xn, xx2, y, ya,
yya, z0, z, zz, z2, zz2;
#ifndef DLA_FMS
double t5, t6;
#endif
int p;
number num, v;
mp_no mpa, mpt1, mpt2;
double retval;
int __branred (double, double *, double *);
int __mpranred (double, mp_no *, int);
SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
/* x=+-INF, x=NaN */
num.d = x;
ux = num.i[HIGH_HALF];
if ((ux & 0x7ff00000) == 0x7ff00000)
{
if ((ux & 0x7fffffff) == 0x7ff00000)
__set_errno (EDOM);
retval = x - x;
goto ret;
}
w = (x < 0.0) ? -x : x;
/* (I) The case abs(x) <= 1.259e-8 */
if (w <= g1.d)
{
math_check_force_underflow_nonneg (w);
retval = x;
goto ret;
}
/* (II) The case 1.259e-8 < abs(x) <= 0.0608 */
if (w <= g2.d)
{
/* First stage */
x2 = x * x;
t2 = d9.d + x2 * d11.d;
t2 = d7.d + x2 * t2;
t2 = d5.d + x2 * t2;
t2 = d3.d + x2 * t2;
t2 *= x * x2;
if ((y = x + (t2 - u1.d * t2)) == x + (t2 + u1.d * t2))
{
retval = y;
goto ret;
}
/* Second stage */
c1 = a25.d + x2 * a27.d;
c1 = a23.d + x2 * c1;
c1 = a21.d + x2 * c1;
c1 = a19.d + x2 * c1;
c1 = a17.d + x2 * c1;
c1 = a15.d + x2 * c1;
c1 *= x2;
EMULV (x, x, x2, xx2, t1, t2, t3, t4, t5);
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (x, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (x, 0.0, c2, cc2, c1, cc1, t1, t2);
if ((y = c1 + (cc1 - u2.d * c1)) == c1 + (cc1 + u2.d * c1))
{
retval = y;
goto ret;
}
retval = tanMp (x);
goto ret;
}
/* (III) The case 0.0608 < abs(x) <= 0.787 */
if (w <= g3.d)
{
/* First stage */
i = ((int) (mfftnhf.d + TWO8 * w));
z = w - xfg[i][0].d;
z2 = z * z;
s = (x < 0.0) ? -1 : 1;
pz = z + z * z2 * (e0.d + z2 * e1.d);
fi = xfg[i][1].d;
gi = xfg[i][2].d;
t2 = pz * (gi + fi) / (gi - pz);
if ((y = fi + (t2 - fi * u3.d)) == fi + (t2 + fi * u3.d))
{
retval = (s * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = fi * ua3.d + t3 * ub3.d;
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
{
retval = (s * y);
goto ret;
}
/* Second stage */
ffi = xfg[i][3].d;
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
EMULV (z, z, z2, zz2, t1, t2, t3, t4, t5);
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (z, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (z, 0.0, c2, cc2, c1, cc1, t1, t2);
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8);
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u4.d * c3)) == c3 + (cc3 + u4.d * c3))
{
retval = (s * y);
goto ret;
}
retval = tanMp (x);
goto ret;
}
/* (---) The case 0.787 < abs(x) <= 25 */
if (w <= g4.d)
{
/* Range reduction by algorithm i */
t = (x * hpinv.d + toint.d);
xn = t - toint.d;
v.d = t;
t1 = (x - xn * mp1.d) - xn * mp2.d;
n = v.i[LOW_HALF] & 0x00000001;
da = xn * mp3.d;
a = t1 - da;
da = (t1 - a) - da;
if (a < 0.0)
{
ya = -a;
yya = -da;
sy = -1;
}
else
{
ya = a;
yya = da;
sy = 1;
}
/* (IV),(V) The case 0.787 < abs(x) <= 25, abs(y) <= 1e-7 */
if (ya <= gy1.d)
{
retval = tanMp (x);
goto ret;
}
/* (VI) The case 0.787 < abs(x) <= 25, 1e-7 < abs(y) <= 0.0608 */
if (ya <= gy2.d)
{
a2 = a * a;
t2 = d9.d + a2 * d11.d;
t2 = d7.d + a2 * t2;
t2 = d5.d + a2 * t2;
t2 = d3.d + a2 * t2;
t2 = da + a * a2 * t2;
if (n)
{
/* First stage -cot */
EADD (a, t2, b, db);
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10);
if ((y = c + (dc - u6.d * c)) == c + (dc + u6.d * c))
{
retval = (-y);
goto ret;
}
}
else
{
/* First stage tan */
if ((y = a + (t2 - u5.d * a)) == a + (t2 + u5.d * a))
{
retval = y;
goto ret;
}
}
/* Second stage */
/* Range reduction by algorithm ii */
t = (x * hpinv.d + toint.d);
xn = t - toint.d;
v.d = t;
t1 = (x - xn * mp1.d) - xn * mp2.d;
n = v.i[LOW_HALF] & 0x00000001;
da = xn * pp3.d;
t = t1 - da;
da = (t1 - t) - da;
t1 = xn * pp4.d;
a = t - t1;
da = ((t - a) - t1) + da;
/* Second stage */
EADD (a, da, t1, t2);
a = t1;
da = t2;
MUL2 (a, da, a, da, x2, xx2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = a25.d + x2 * a27.d;
c1 = a23.d + x2 * c1;
c1 = a21.d + x2 * c1;
c1 = a19.d + x2 * c1;
c1 = a17.d + x2 * c1;
c1 = a15.d + x2 * c1;
c1 *= x2;
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (a, da, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a, da, c2, cc2, c1, cc1, t1, t2);
if (n)
{
/* Second stage -cot */
DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7,
t8, t9, t10);
if ((y = c2 + (cc2 - u8.d * c2)) == c2 + (cc2 + u8.d * c2))
{
retval = (-y);
goto ret;
}
}
else
{
/* Second stage tan */
if ((y = c1 + (cc1 - u7.d * c1)) == c1 + (cc1 + u7.d * c1))
{
retval = y;
goto ret;
}
}
retval = tanMp (x);
goto ret;
}
/* (VII) The case 0.787 < abs(x) <= 25, 0.0608 < abs(y) <= 0.787 */
/* First stage */
i = ((int) (mfftnhf.d + TWO8 * ya));
z = (z0 = (ya - xfg[i][0].d)) + yya;
z2 = z * z;
pz = z + z * z2 * (e0.d + z2 * e1.d);
fi = xfg[i][1].d;
gi = xfg[i][2].d;
if (n)
{
/* -cot */
t2 = pz * (fi + gi) / (fi + pz);
if ((y = gi - (t2 - gi * u10.d)) == gi - (t2 + gi * u10.d))
{
retval = (-sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = gi * ua10.d + t3 * ub10.d;
if ((y = gi - (t2 - t4)) == gi - (t2 + t4))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
t2 = pz * (gi + fi) / (gi - pz);
if ((y = fi + (t2 - fi * u9.d)) == fi + (t2 + fi * u9.d))
{
retval = (sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = fi * ua9.d + t3 * ub9.d;
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
{
retval = (sy * y);
goto ret;
}
}
/* Second stage */
ffi = xfg[i][3].d;
EADD (z0, yya, z, zz)
MUL2 (z, zz, z, zz, z2, zz2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2);
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8);
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
if (n)
{
/* -cot */
DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u12.d * c3)) == c3 + (cc3 + u12.d * c3))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u11.d * c3)) == c3 + (cc3 + u11.d * c3))
{
retval = (sy * y);
goto ret;
}
}
retval = tanMp (x);
goto ret;
}
/* (---) The case 25 < abs(x) <= 1e8 */
if (w <= g5.d)
{
/* Range reduction by algorithm ii */
t = (x * hpinv.d + toint.d);
xn = t - toint.d;
v.d = t;
t1 = (x - xn * mp1.d) - xn * mp2.d;
n = v.i[LOW_HALF] & 0x00000001;
da = xn * pp3.d;
t = t1 - da;
da = (t1 - t) - da;
t1 = xn * pp4.d;
a = t - t1;
da = ((t - a) - t1) + da;
EADD (a, da, t1, t2);
a = t1;
da = t2;
if (a < 0.0)
{
ya = -a;
yya = -da;
sy = -1;
}
else
{
ya = a;
yya = da;
sy = 1;
}
/* (+++) The case 25 < abs(x) <= 1e8, abs(y) <= 1e-7 */
if (ya <= gy1.d)
{
retval = tanMp (x);
goto ret;
}
/* (VIII) The case 25 < abs(x) <= 1e8, 1e-7 < abs(y) <= 0.0608 */
if (ya <= gy2.d)
{
a2 = a * a;
t2 = d9.d + a2 * d11.d;
t2 = d7.d + a2 * t2;
t2 = d5.d + a2 * t2;
t2 = d3.d + a2 * t2;
t2 = da + a * a2 * t2;
if (n)
{
/* First stage -cot */
EADD (a, t2, b, db);
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10);
if ((y = c + (dc - u14.d * c)) == c + (dc + u14.d * c))
{
retval = (-y);
goto ret;
}
}
else
{
/* First stage tan */
if ((y = a + (t2 - u13.d * a)) == a + (t2 + u13.d * a))
{
retval = y;
goto ret;
}
}
/* Second stage */
MUL2 (a, da, a, da, x2, xx2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = a25.d + x2 * a27.d;
c1 = a23.d + x2 * c1;
c1 = a21.d + x2 * c1;
c1 = a19.d + x2 * c1;
c1 = a17.d + x2 * c1;
c1 = a15.d + x2 * c1;
c1 *= x2;
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (a, da, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a, da, c2, cc2, c1, cc1, t1, t2);
if (n)
{
/* Second stage -cot */
DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7,
t8, t9, t10);
if ((y = c2 + (cc2 - u16.d * c2)) == c2 + (cc2 + u16.d * c2))
{
retval = (-y);
goto ret;
}
}
else
{
/* Second stage tan */
if ((y = c1 + (cc1 - u15.d * c1)) == c1 + (cc1 + u15.d * c1))
{
retval = (y);
goto ret;
}
}
retval = tanMp (x);
goto ret;
}
/* (IX) The case 25 < abs(x) <= 1e8, 0.0608 < abs(y) <= 0.787 */
/* First stage */
i = ((int) (mfftnhf.d + TWO8 * ya));
z = (z0 = (ya - xfg[i][0].d)) + yya;
z2 = z * z;
pz = z + z * z2 * (e0.d + z2 * e1.d);
fi = xfg[i][1].d;
gi = xfg[i][2].d;
if (n)
{
/* -cot */
t2 = pz * (fi + gi) / (fi + pz);
if ((y = gi - (t2 - gi * u18.d)) == gi - (t2 + gi * u18.d))
{
retval = (-sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = gi * ua18.d + t3 * ub18.d;
if ((y = gi - (t2 - t4)) == gi - (t2 + t4))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
t2 = pz * (gi + fi) / (gi - pz);
if ((y = fi + (t2 - fi * u17.d)) == fi + (t2 + fi * u17.d))
{
retval = (sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = fi * ua17.d + t3 * ub17.d;
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
{
retval = (sy * y);
goto ret;
}
}
/* Second stage */
ffi = xfg[i][3].d;
EADD (z0, yya, z, zz);
MUL2 (z, zz, z, zz, z2, zz2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2);
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8);
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
if (n)
{
/* -cot */
DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u20.d * c3)) == c3 + (cc3 + u20.d * c3))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u19.d * c3)) == c3 + (cc3 + u19.d * c3))
{
retval = (sy * y);
goto ret;
}
}
retval = tanMp (x);
goto ret;
}
/* (---) The case 1e8 < abs(x) < 2**1024 */
/* Range reduction by algorithm iii */
n = (__branred (x, &a, &da)) & 0x00000001;
EADD (a, da, t1, t2);
a = t1;
da = t2;
if (a < 0.0)
{
ya = -a;
yya = -da;
sy = -1;
}
else
{
ya = a;
yya = da;
sy = 1;
}
/* (+++) The case 1e8 < abs(x) < 2**1024, abs(y) <= 1e-7 */
if (ya <= gy1.d)
{
retval = tanMp (x);
goto ret;
}
/* (X) The case 1e8 < abs(x) < 2**1024, 1e-7 < abs(y) <= 0.0608 */
if (ya <= gy2.d)
{
a2 = a * a;
t2 = d9.d + a2 * d11.d;
t2 = d7.d + a2 * t2;
t2 = d5.d + a2 * t2;
t2 = d3.d + a2 * t2;
t2 = da + a * a2 * t2;
if (n)
{
/* First stage -cot */
EADD (a, t2, b, db);
DIV2 (1.0, 0.0, b, db, c, dc, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c + (dc - u22.d * c)) == c + (dc + u22.d * c))
{
retval = (-y);
goto ret;
}
}
else
{
/* First stage tan */
if ((y = a + (t2 - u21.d * a)) == a + (t2 + u21.d * a))
{
retval = y;
goto ret;
}
}
/* Second stage */
/* Reduction by algorithm iv */
p = 10;
n = (__mpranred (x, &mpa, p)) & 0x00000001;
__mp_dbl (&mpa, &a, p);
__dbl_mp (a, &mpt1, p);
__sub (&mpa, &mpt1, &mpt2, p);
__mp_dbl (&mpt2, &da, p);
MUL2 (a, da, a, da, x2, xx2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = a25.d + x2 * a27.d;
c1 = a23.d + x2 * c1;
c1 = a21.d + x2 * c1;
c1 = a19.d + x2 * c1;
c1 = a17.d + x2 * c1;
c1 = a15.d + x2 * c1;
c1 *= x2;
ADD2 (a13.d, aa13.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a11.d, aa11.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a9.d, aa9.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a7.d, aa7.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a5.d, aa5.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (x2, xx2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (a, da, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a, da, c2, cc2, c1, cc1, t1, t2);
if (n)
{
/* Second stage -cot */
DIV2 (1.0, 0.0, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10);
if ((y = c2 + (cc2 - u24.d * c2)) == c2 + (cc2 + u24.d * c2))
{
retval = (-y);
goto ret;
}
}
else
{
/* Second stage tan */
if ((y = c1 + (cc1 - u23.d * c1)) == c1 + (cc1 + u23.d * c1))
{
retval = y;
goto ret;
}
}
retval = tanMp (x);
goto ret;
}
/* (XI) The case 1e8 < abs(x) < 2**1024, 0.0608 < abs(y) <= 0.787 */
/* First stage */
i = ((int) (mfftnhf.d + TWO8 * ya));
z = (z0 = (ya - xfg[i][0].d)) + yya;
z2 = z * z;
pz = z + z * z2 * (e0.d + z2 * e1.d);
fi = xfg[i][1].d;
gi = xfg[i][2].d;
if (n)
{
/* -cot */
t2 = pz * (fi + gi) / (fi + pz);
if ((y = gi - (t2 - gi * u26.d)) == gi - (t2 + gi * u26.d))
{
retval = (-sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = gi * ua26.d + t3 * ub26.d;
if ((y = gi - (t2 - t4)) == gi - (t2 + t4))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
t2 = pz * (gi + fi) / (gi - pz);
if ((y = fi + (t2 - fi * u25.d)) == fi + (t2 + fi * u25.d))
{
retval = (sy * y);
goto ret;
}
t3 = (t2 < 0.0) ? -t2 : t2;
t4 = fi * ua25.d + t3 * ub25.d;
if ((y = fi + (t2 - t4)) == fi + (t2 + t4))
{
retval = (sy * y);
goto ret;
}
}
/* Second stage */
ffi = xfg[i][3].d;
EADD (z0, yya, z, zz);
MUL2 (z, zz, z, zz, z2, zz2, t1, t2, t3, t4, t5, t6, t7, t8);
c1 = z2 * (a7.d + z2 * (a9.d + z2 * a11.d));
ADD2 (a5.d, aa5.d, c1, 0.0, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (a3.d, aa3.d, c1, cc1, c2, cc2, t1, t2);
MUL2 (z2, zz2, c2, cc2, c1, cc1, t1, t2, t3, t4, t5, t6, t7, t8);
MUL2 (z, zz, c1, cc1, c2, cc2, t1, t2, t3, t4, t5, t6, t7, t8);
ADD2 (z, zz, c2, cc2, c1, cc1, t1, t2);
ADD2 (fi, ffi, c1, cc1, c2, cc2, t1, t2);
MUL2 (fi, ffi, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8);
SUB2 (1.0, 0.0, c3, cc3, c1, cc1, t1, t2);
if (n)
{
/* -cot */
DIV2 (c1, cc1, c2, cc2, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u28.d * c3)) == c3 + (cc3 + u28.d * c3))
{
retval = (-sy * y);
goto ret;
}
}
else
{
/* tan */
DIV2 (c2, cc2, c1, cc1, c3, cc3, t1, t2, t3, t4, t5, t6, t7, t8, t9,
t10);
if ((y = c3 + (cc3 - u27.d * c3)) == c3 + (cc3 + u27.d * c3))
{
retval = (sy * y);
goto ret;
}
}
retval = tanMp (x);
goto ret;
ret:
return retval;
}
/* multiple precision stage */
/* Convert x to multi precision number,compute tan(x) by mptan() routine */
/* and converts result back to double */
static double
SECTION
tanMp (double x)
{
int p;
double y;
mp_no mpy;
p = 32;
__mptan (x, &mpy, p);
__mp_dbl (&mpy, &y, p);
LIBC_PROBE (slowtan, 2, &x, &y);
return y;
}
#ifdef NO_LONG_DOUBLE
weak_alias (tan, tanl)
#endif