150 lines
4.0 KiB
C

/*
* IBM Accurate Mathematical Library
* Written by International Business Machines Corp.
* Copyright (C) 2001-2013 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*******************************************************************/
/* */
/* MODULE_NAME: branred.c */
/* */
/* FUNCTIONS: branred */
/* */
/* FILES NEEDED: branred.h mydefs.h endian.h mpa.h */
/* mha.c */
/* */
/* Routine branred() performs range reduction of a double number */
/* x into Double length number a+aa,such that */
/* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,.... */
/* Routine returns the integer (n mod 4) of the above description */
/* of x. */
/*******************************************************************/
#include "endian.h"
#include "mydefs.h"
#include "branred.h"
#include <math_private.h>
#ifndef SECTION
# define SECTION
#endif
/*******************************************************************/
/* Routine branred() performs range reduction of a double number */
/* x into Double length number a+aa,such that */
/* x=n*pi/2+(a+aa), abs(a+aa)<pi/4, n=0,+-1,+-2,.... */
/* Routine return integer (n mod 4) */
/*******************************************************************/
int
SECTION
__branred(double x, double *a, double *aa)
{
int i,k;
#if 0
int n;
#endif
mynumber u,gor;
#if 0
mynumber v;
#endif
double r[6],s,t,sum,b,bb,sum1,sum2,b1,bb1,b2,bb2,x1,x2,t1,t2;
x*=tm600.x;
t=x*split; /* split x to two numbers */
x1=t-(t-x);
x2=x-x1;
sum=0;
u.x = x1;
k = (u.i[HIGH_HALF]>>20)&2047;
k = (k-450)/24;
if (k<0)
k=0;
gor.x = t576.x;
gor.i[HIGH_HALF] -= ((k*24)<<20);
for (i=0;i<6;i++)
{ r[i] = x1*toverp[k+i]*gor.x; gor.x *= tm24.x; }
for (i=0;i<3;i++) {
s=(r[i]+big.x)-big.x;
sum+=s;
r[i]-=s;
}
t=0;
for (i=0;i<6;i++)
t+=r[5-i];
bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5];
s=(t+big.x)-big.x;
sum+=s;
t-=s;
b=t+bb;
bb=(t-b)+bb;
s=(sum+big1.x)-big1.x;
sum-=s;
b1=b;
bb1=bb;
sum1=sum;
sum=0;
u.x = x2;
k = (u.i[HIGH_HALF]>>20)&2047;
k = (k-450)/24;
if (k<0)
k=0;
gor.x = t576.x;
gor.i[HIGH_HALF] -= ((k*24)<<20);
for (i=0;i<6;i++)
{ r[i] = x2*toverp[k+i]*gor.x; gor.x *= tm24.x; }
for (i=0;i<3;i++) {
s=(r[i]+big.x)-big.x;
sum+=s;
r[i]-=s;
}
t=0;
for (i=0;i<6;i++)
t+=r[5-i];
bb=(((((r[0]-t)+r[1])+r[2])+r[3])+r[4])+r[5];
s=(t+big.x)-big.x;
sum+=s;
t-=s;
b=t+bb;
bb=(t-b)+bb;
s=(sum+big1.x)-big1.x;
sum-=s;
b2=b;
bb2=bb;
sum2=sum;
sum=sum1+sum2;
b=b1+b2;
bb = (ABS(b1)>ABS(b2))? (b1-b)+b2 : (b2-b)+b1;
if (b > 0.5)
{b-=1.0; sum+=1.0;}
else if (b < -0.5)
{b+=1.0; sum-=1.0;}
s=b+(bb+bb1+bb2);
t=((b-s)+bb)+(bb1+bb2);
b=s*split;
t1=b-(b-s);
t2=s-t1;
b=s*hp0.x;
bb=(((t1*mp1.x-b)+t1*mp2.x)+t2*mp1.x)+(t2*mp2.x+s*hp1.x+t*hp0.x);
s=b+bb;
t=(b-s)+bb;
*a=s;
*aa=t;
return ((int) sum)&3; /* return quater of unit circle */
}