Alan Modra 765714cafc PowerPC floating point little-endian [3 of 15]
http://sourceware.org/ml/libc-alpha/2013-08/msg00083.html

Further replacement of ieee854 macros and unions.  These files also
have some optimisations for comparison against 0.0L, infinity and nan.
Since the ABI specifies that the high double of an IBM long double
pair is the value rounded to double, a high double of 0.0 means the
low double must also be 0.0.  The ABI also says that infinity and
nan are encoded in the high double, with the low double unspecified.
This means that tests for 0.0L, +/-Infinity and +/-NaN need only check
the high double.

	* sysdeps/ieee754/ldbl-128ibm/e_atan2l.c (__ieee754_atan2l): Rewrite
	all uses of ieee854 long double macros and unions.  Simplify tests
	for long doubles that are fully specified by the high double.
	* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_ilogbl.c (__ieee754_ilogbl): Likewise.
	Remove dead code too.
	* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
	(__ieee754_ynl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_log10l.c (__ieee754_log10l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
	Remove dead code too.
	* sysdeps/ieee754/ldbl-128ibm/k_tanl.c (__kernel_tanl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_isinf_nsl.c (__isinf_nsl): Likewise.
	Simplify.
	* sysdeps/ieee754/ldbl-128ibm/s_isinfl.c (___isinfl): Likewise.
	Simplify.
	* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_modfl.c (__modfl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl): Likewise.
	Comment on variable precision.
	* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_scalblnl.c (__scalblnl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (__scalbnl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Likewise.
	* sysdeps/powerpc/fpu/libm-test-ulps: Adjust tan_towardzero ulps.
2013-10-04 10:32:36 +09:30

251 lines
6.4 KiB
C

/* log1pl.c
*
* Relative error logarithm
* Natural logarithm of 1+x, 128-bit long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, log1pl();
*
* y = log1pl( x );
*
*
*
* DESCRIPTION:
*
* Returns the base e (2.718...) logarithm of 1+x.
*
* The argument 1+x is separated into its exponent and fractional
* parts. If the exponent is between -1 and +1, the logarithm
* of the fraction is approximated by
*
* log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
*
* Otherwise, setting z = 2(w-1)/(w+1),
*
* log(w) = z + z^3 P(z)/Q(z).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -1, 8 100000 1.9e-34 4.3e-35
*/
/* Copyright 2001 by Stephen L. Moshier
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <math_ldbl_opt.h>
/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
* 1/sqrt(2) <= 1+x < sqrt(2)
* Theoretical peak relative error = 5.3e-37,
* relative peak error spread = 2.3e-14
*/
static const long double
P12 = 1.538612243596254322971797716843006400388E-6L,
P11 = 4.998469661968096229986658302195402690910E-1L,
P10 = 2.321125933898420063925789532045674660756E1L,
P9 = 4.114517881637811823002128927449878962058E2L,
P8 = 3.824952356185897735160588078446136783779E3L,
P7 = 2.128857716871515081352991964243375186031E4L,
P6 = 7.594356839258970405033155585486712125861E4L,
P5 = 1.797628303815655343403735250238293741397E5L,
P4 = 2.854829159639697837788887080758954924001E5L,
P3 = 3.007007295140399532324943111654767187848E5L,
P2 = 2.014652742082537582487669938141683759923E5L,
P1 = 7.771154681358524243729929227226708890930E4L,
P0 = 1.313572404063446165910279910527789794488E4L,
/* Q12 = 1.000000000000000000000000000000000000000E0L, */
Q11 = 4.839208193348159620282142911143429644326E1L,
Q10 = 9.104928120962988414618126155557301584078E2L,
Q9 = 9.147150349299596453976674231612674085381E3L,
Q8 = 5.605842085972455027590989944010492125825E4L,
Q7 = 2.248234257620569139969141618556349415120E5L,
Q6 = 6.132189329546557743179177159925690841200E5L,
Q5 = 1.158019977462989115839826904108208787040E6L,
Q4 = 1.514882452993549494932585972882995548426E6L,
Q3 = 1.347518538384329112529391120390701166528E6L,
Q2 = 7.777690340007566932935753241556479363645E5L,
Q1 = 2.626900195321832660448791748036714883242E5L,
Q0 = 3.940717212190338497730839731583397586124E4L;
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
* where z = 2(x-1)/(x+1)
* 1/sqrt(2) <= x < sqrt(2)
* Theoretical peak relative error = 1.1e-35,
* relative peak error spread 1.1e-9
*/
static const long double
R5 = -8.828896441624934385266096344596648080902E-1L,
R4 = 8.057002716646055371965756206836056074715E1L,
R3 = -2.024301798136027039250415126250455056397E3L,
R2 = 2.048819892795278657810231591630928516206E4L,
R1 = -8.977257995689735303686582344659576526998E4L,
R0 = 1.418134209872192732479751274970992665513E5L,
/* S6 = 1.000000000000000000000000000000000000000E0L, */
S5 = -1.186359407982897997337150403816839480438E2L,
S4 = 3.998526750980007367835804959888064681098E3L,
S3 = -5.748542087379434595104154610899551484314E4L,
S2 = 4.001557694070773974936904547424676279307E5L,
S1 = -1.332535117259762928288745111081235577029E6L,
S0 = 1.701761051846631278975701529965589676574E6L;
/* C1 + C2 = ln 2 */
static const long double C1 = 6.93145751953125E-1L;
static const long double C2 = 1.428606820309417232121458176568075500134E-6L;
static const long double sqrth = 0.7071067811865475244008443621048490392848L;
/* ln (2^16384 * (1 - 2^-113)) */
static const long double maxlog = 1.1356523406294143949491931077970764891253E4L;
static const long double big = 2e300L;
static const long double zero = 0.0L;
long double
__log1pl (long double xm1)
{
long double x, y, z, r, s;
double xhi;
int32_t hx, lx;
int e;
/* Test for NaN or infinity input. */
xhi = ldbl_high (xm1);
EXTRACT_WORDS (hx, lx, xhi);
if (hx >= 0x7ff00000)
return xm1;
/* log1p(+- 0) = +- 0. */
if (((hx & 0x7fffffff) | lx) == 0)
return xm1;
x = xm1 + 1.0L;
/* log1p(-1) = -inf */
if (x <= 0.0L)
{
if (x == 0.0L)
return (-1.0L / (x - x));
else
return (zero / (x - x));
}
/* Separate mantissa from exponent. */
/* Use frexp used so that denormal numbers will be handled properly. */
x = __frexpl (x, &e);
/* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
where z = 2(x-1)/x+1). */
if ((e > 2) || (e < -2))
{
if (x < sqrth)
{ /* 2( 2x-1 )/( 2x+1 ) */
e -= 1;
z = x - 0.5L;
y = 0.5L * z + 0.5L;
}
else
{ /* 2 (x-1)/(x+1) */
z = x - 0.5L;
z -= 0.5L;
y = 0.5L * x + 0.5L;
}
x = z / y;
z = x * x;
r = ((((R5 * z
+ R4) * z
+ R3) * z
+ R2) * z
+ R1) * z
+ R0;
s = (((((z
+ S5) * z
+ S4) * z
+ S3) * z
+ S2) * z
+ S1) * z
+ S0;
z = x * (z * r / s);
z = z + e * C2;
z = z + x;
z = z + e * C1;
return (z);
}
/* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
if (x < sqrth)
{
e -= 1;
if (e != 0)
x = 2.0L * x - 1.0L; /* 2x - 1 */
else
x = xm1;
}
else
{
if (e != 0)
x = x - 1.0L;
else
x = xm1;
}
z = x * x;
r = (((((((((((P12 * x
+ P11) * x
+ P10) * x
+ P9) * x
+ P8) * x
+ P7) * x
+ P6) * x
+ P5) * x
+ P4) * x
+ P3) * x
+ P2) * x
+ P1) * x
+ P0;
s = (((((((((((x
+ Q11) * x
+ Q10) * x
+ Q9) * x
+ Q8) * x
+ Q7) * x
+ Q6) * x
+ Q5) * x
+ Q4) * x
+ Q3) * x
+ Q2) * x
+ Q1) * x
+ Q0;
y = x * (z * r / s);
y = y + e * C2;
z = y - 0.5L * z;
z = z + x;
z = z + e * C1;
return (z);
}
long_double_symbol (libm, __log1pl, log1pl);