ea1bd74def
explicit_bzero(s, n) is the same as memset(s, 0, n), except that the compiler is not allowed to delete a call to explicit_bzero even if the memory pointed to by 's' is dead after the call. Right now, this effect is achieved externally by having explicit_bzero be a function whose semantics are unknown to the compiler, and internally, with a no-op asm statement that clobbers memory. This does mean that small explicit_bzero operations cannot be expanded inline as small memset operations can, but on the other hand, small memset operations do get deleted by the compiler. Hopefully full compiler support for explicit_bzero will happen relatively soon. There are two new tests: test-explicit_bzero.c verifies the visible semantics in the same way as the existing test-bzero.c, and tst-xbzero-opt.c verifies the not-being-optimized-out property. The latter is conceptually based on a test written by Matthew Dempsky for the OpenBSD regression suite. The crypt() implementation has an immediate use for this new feature. We avoid having to add a GLIBC_PRIVATE alias for explicit_bzero by running all of libcrypt's calls through the fortified variant, __explicit_bzero_chk, which is in the impl namespace anyway. Currently I'm not aware of anything in libc proper that needs this, but the glue is all in place if it does become necessary. The legacy DES implementation wasn't bothering to clear its buffers, so I added that, mostly for consistency's sake. * string/explicit_bzero.c: New routine. * string/test-explicit_bzero.c, string/tst-xbzero-opt.c: New tests. * string/Makefile (routines, strop-tests, tests): Add them. * string/test-memset.c: Add ifdeffage for testing explicit_bzero. * string/string.h [__USE_MISC]: Declare explicit_bzero. * debug/explicit_bzero_chk.c: New routine. * debug/Makefile (routines): Add it. * debug/tst-chk1.c: Test fortification of explicit_bzero. * string/bits/string3.h: Fortify explicit_bzero. * manual/string.texi: Document explicit_bzero. * NEWS: Mention addition of explicit_bzero. * crypt/crypt-entry.c (__crypt_r): Clear key-dependent intermediate data before returning, using explicit_bzero. * crypt/md5-crypt.c (__md5_crypt_r): Likewise. * crypt/sha256-crypt.c (__sha256_crypt_r): Likewise. * crypt/sha512-crypt.c (__sha512_crypt_r): Likewise. * include/string.h: Redirect internal uses of explicit_bzero to __explicit_bzero_chk[_internal]. * string/Versions [GLIBC_2.25]: Add explicit_bzero. * debug/Versions [GLIBC_2.25]: Add __explicit_bzero_chk. * sysdeps/arm/nacl/libc.abilist * sysdeps/unix/sysv/linux/aarch64/libc.abilist * sysdeps/unix/sysv/linux/alpha/libc.abilist * sysdeps/unix/sysv/linux/arm/libc.abilist * sysdeps/unix/sysv/linux/hppa/libc.abilist * sysdeps/unix/sysv/linux/i386/libc.abilist * sysdeps/unix/sysv/linux/ia64/libc.abilist * sysdeps/unix/sysv/linux/m68k/coldfire/libc.abilist * sysdeps/unix/sysv/linux/m68k/m680x0/libc.abilist * sysdeps/unix/sysv/linux/microblaze/libc.abilist * sysdeps/unix/sysv/linux/mips/mips32/fpu/libc.abilist * sysdeps/unix/sysv/linux/mips/mips32/nofpu/libc.abilist * sysdeps/unix/sysv/linux/mips/mips64/n32/libc.abilist * sysdeps/unix/sysv/linux/mips/mips64/n64/libc.abilist * sysdeps/unix/sysv/linux/nios2/libc.abilist * sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libc.abilist * sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libc.abilist * sysdeps/unix/sysv/linux/powerpc/powerpc64/libc-le.abilist * sysdeps/unix/sysv/linux/powerpc/powerpc64/libc.abilist * sysdeps/unix/sysv/linux/s390/s390-32/libc.abilist * sysdeps/unix/sysv/linux/s390/s390-64/libc.abilist * sysdeps/unix/sysv/linux/sh/libc.abilist * sysdeps/unix/sysv/linux/sparc/sparc32/libc.abilist * sysdeps/unix/sysv/linux/sparc/sparc64/libc.abilist * sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libc.abilist * sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libc.abilist * sysdeps/unix/sysv/linux/tile/tilepro/libc.abilist * sysdeps/unix/sysv/linux/x86_64/64/libc.abilist * sysdeps/unix/sysv/linux/x86_64/x32/libc.abilist: Add entries for explicit_bzero and __explicit_bzero_chk.
289 lines
8.5 KiB
C
289 lines
8.5 KiB
C
/* Test that explicit_bzero block clears are not optimized out.
|
|
Copyright (C) 2016 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* This test is conceptually based on a test designed by Matthew
|
|
Dempsky for the OpenBSD regression suite:
|
|
<openbsd>/src/regress/lib/libc/explicit_bzero/explicit_bzero.c.
|
|
The basic idea is, we have a function that contains a
|
|
block-clearing operation (not necessarily explicit_bzero), after
|
|
which the block is dead, in the compiler-jargon sense. Execute
|
|
that function while running on a user-allocated alternative
|
|
stack. Then we have another pointer to the memory region affected
|
|
by the block clear -- namely, the original allocation for the
|
|
alternative stack -- and can find out whether it actually happened.
|
|
|
|
The OpenBSD test uses sigaltstack and SIGUSR1 to get onto an
|
|
alternative stack. This causes a number of awkward problems; some
|
|
operating systems (e.g. Solaris and OSX) wipe the signal stack upon
|
|
returning to the normal stack, there's no way to be sure that other
|
|
processes running on the same system will not interfere, and the
|
|
signal stack is very small so it's not safe to call printf there.
|
|
This implementation instead uses the <ucontext.h> coroutine
|
|
interface. The coroutine stack is still too small to safely use
|
|
printf, but we know the OS won't erase it, so we can do all the
|
|
checks and printing from the normal stack. */
|
|
|
|
#define _GNU_SOURCE 1
|
|
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ucontext.h>
|
|
#include <unistd.h>
|
|
|
|
/* A byte pattern that is unlikely to occur by chance: the first 16
|
|
prime numbers (OEIS A000040). */
|
|
static const unsigned char test_pattern[16] =
|
|
{
|
|
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53
|
|
};
|
|
|
|
/* Immediately after each subtest returns, we call swapcontext to get
|
|
back onto the main stack. That call might itself overwrite the
|
|
test pattern, so we fill a modest-sized buffer with copies of it
|
|
and check whether any of them survived. */
|
|
|
|
#define PATTERN_SIZE (sizeof test_pattern)
|
|
#define PATTERN_REPS 32
|
|
#define TEST_BUFFER_SIZE (PATTERN_SIZE * PATTERN_REPS)
|
|
|
|
/* There are three subtests, two of which are sanity checks.
|
|
Each test follows this sequence:
|
|
|
|
main coroutine
|
|
---- --------
|
|
advance cur_subtest
|
|
swap
|
|
call setup function
|
|
prepare test buffer
|
|
swap
|
|
verify that buffer
|
|
was filled in
|
|
swap
|
|
possibly clear buffer
|
|
return
|
|
swap
|
|
check buffer again,
|
|
according to test
|
|
expectation
|
|
|
|
In the "no_clear" case, we don't do anything to the test buffer
|
|
between preparing it and letting it go out of scope, and we expect
|
|
to find it. This confirms that the test buffer does get filled in
|
|
and we can find it from the stack buffer. In the "ordinary_clear"
|
|
case, we clear it using memset, and we expect to find it. This
|
|
confirms that the compiler can optimize out block clears in this
|
|
context; if it can't, the real test might be succeeding for the
|
|
wrong reason. Finally, the "explicit_clear" case uses
|
|
explicit_bzero and expects _not_ to find the test buffer, which is
|
|
the real test. */
|
|
|
|
static ucontext_t uc_main, uc_co;
|
|
|
|
/* Always check the test buffer immediately after filling it; this
|
|
makes externally visible side effects depend on the buffer existing
|
|
and having been filled in. */
|
|
static void
|
|
prepare_test_buffer (unsigned char *buf)
|
|
{
|
|
for (unsigned int i = 0; i < PATTERN_REPS; i++)
|
|
memcpy (buf + i*PATTERN_SIZE, test_pattern, PATTERN_SIZE);
|
|
|
|
if (swapcontext (&uc_co, &uc_main))
|
|
abort ();
|
|
}
|
|
|
|
static void
|
|
setup_no_clear (void)
|
|
{
|
|
unsigned char buf[TEST_BUFFER_SIZE];
|
|
prepare_test_buffer (buf);
|
|
}
|
|
|
|
static void
|
|
setup_ordinary_clear (void)
|
|
{
|
|
unsigned char buf[TEST_BUFFER_SIZE];
|
|
prepare_test_buffer (buf);
|
|
memset (buf, 0, TEST_BUFFER_SIZE);
|
|
}
|
|
|
|
static void
|
|
setup_explicit_clear (void)
|
|
{
|
|
unsigned char buf[TEST_BUFFER_SIZE];
|
|
prepare_test_buffer (buf);
|
|
explicit_bzero (buf, TEST_BUFFER_SIZE);
|
|
}
|
|
|
|
enum test_expectation { EXPECT_NONE, EXPECT_SOME, EXPECT_ALL };
|
|
struct subtest
|
|
{
|
|
void (*setup_subtest) (void);
|
|
const char *label;
|
|
enum test_expectation expected;
|
|
};
|
|
static const struct subtest *cur_subtest;
|
|
|
|
static const struct subtest subtests[] =
|
|
{
|
|
{ setup_no_clear, "no clear", EXPECT_SOME },
|
|
{ setup_ordinary_clear, "ordinary clear", EXPECT_SOME },
|
|
{ setup_explicit_clear, "explicit clear", EXPECT_NONE },
|
|
{ 0, 0, -1 }
|
|
};
|
|
|
|
static void
|
|
test_coroutine (void)
|
|
{
|
|
while (cur_subtest->setup_subtest)
|
|
{
|
|
cur_subtest->setup_subtest ();
|
|
if (swapcontext (&uc_co, &uc_main))
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* All the code above this point runs on the coroutine stack.
|
|
All the code below this point runs on the main stack. */
|
|
|
|
static int test_status;
|
|
static unsigned char *co_stack_buffer;
|
|
static size_t co_stack_size;
|
|
|
|
static unsigned int
|
|
count_test_patterns (unsigned char *buf, size_t bufsiz)
|
|
{
|
|
unsigned char *first = memmem (buf, bufsiz, test_pattern, PATTERN_SIZE);
|
|
if (!first)
|
|
return 0;
|
|
unsigned int cnt = 0;
|
|
for (unsigned int i = 0; i < PATTERN_REPS; i++)
|
|
{
|
|
unsigned char *p = first + i*PATTERN_SIZE;
|
|
if (p + PATTERN_SIZE - buf > bufsiz)
|
|
break;
|
|
if (memcmp (p, test_pattern, PATTERN_SIZE) == 0)
|
|
cnt++;
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
static void
|
|
check_test_buffer (enum test_expectation expected,
|
|
const char *label, const char *stage)
|
|
{
|
|
unsigned int cnt = count_test_patterns (co_stack_buffer, co_stack_size);
|
|
switch (expected)
|
|
{
|
|
case EXPECT_NONE:
|
|
if (cnt == 0)
|
|
printf ("PASS: %s/%s: expected 0 got %d\n", label, stage, cnt);
|
|
else
|
|
{
|
|
printf ("FAIL: %s/%s: expected 0 got %d\n", label, stage, cnt);
|
|
test_status = 1;
|
|
}
|
|
break;
|
|
|
|
case EXPECT_SOME:
|
|
if (cnt > 0)
|
|
printf ("PASS: %s/%s: expected some got %d\n", label, stage, cnt);
|
|
else
|
|
{
|
|
printf ("FAIL: %s/%s: expected some got 0\n", label, stage);
|
|
test_status = 1;
|
|
}
|
|
break;
|
|
|
|
case EXPECT_ALL:
|
|
if (cnt == PATTERN_REPS)
|
|
printf ("PASS: %s/%s: expected %d got %d\n", label, stage,
|
|
PATTERN_REPS, cnt);
|
|
else
|
|
{
|
|
printf ("FAIL: %s/%s: expected %d got %d\n", label, stage,
|
|
PATTERN_REPS, cnt);
|
|
test_status = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
printf ("ERROR: %s/%s: invalid value for 'expected' = %d\n",
|
|
label, stage, (int)expected);
|
|
test_status = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_loop (void)
|
|
{
|
|
cur_subtest = subtests;
|
|
while (cur_subtest->setup_subtest)
|
|
{
|
|
if (swapcontext (&uc_main, &uc_co))
|
|
abort ();
|
|
check_test_buffer (EXPECT_ALL, cur_subtest->label, "prepare");
|
|
if (swapcontext (&uc_main, &uc_co))
|
|
abort ();
|
|
check_test_buffer (cur_subtest->expected, cur_subtest->label, "test");
|
|
cur_subtest++;
|
|
}
|
|
/* Terminate the coroutine. */
|
|
if (swapcontext (&uc_main, &uc_co))
|
|
abort ();
|
|
}
|
|
|
|
int
|
|
do_test (void)
|
|
{
|
|
size_t page_alignment = sysconf (_SC_PAGESIZE);
|
|
if (page_alignment < sizeof (void *))
|
|
page_alignment = sizeof (void *);
|
|
|
|
co_stack_size = SIGSTKSZ + TEST_BUFFER_SIZE;
|
|
if (co_stack_size < page_alignment * 4)
|
|
co_stack_size = page_alignment * 4;
|
|
|
|
void *p;
|
|
int err = posix_memalign (&p, page_alignment, co_stack_size);
|
|
if (err || !p)
|
|
{
|
|
printf ("ERROR: allocating alt stack: %s\n", strerror (err));
|
|
return 2;
|
|
}
|
|
co_stack_buffer = p;
|
|
|
|
if (getcontext (&uc_co))
|
|
{
|
|
printf ("ERROR: allocating coroutine context: %s\n", strerror (err));
|
|
return 2;
|
|
}
|
|
uc_co.uc_stack.ss_sp = co_stack_buffer;
|
|
uc_co.uc_stack.ss_size = co_stack_size;
|
|
uc_co.uc_link = &uc_main;
|
|
makecontext (&uc_co, test_coroutine, 0);
|
|
|
|
test_loop ();
|
|
return test_status;
|
|
}
|
|
|
|
#include <support/test-driver.c>
|