Alan Modra 765714cafc PowerPC floating point little-endian [3 of 15]
http://sourceware.org/ml/libc-alpha/2013-08/msg00083.html

Further replacement of ieee854 macros and unions.  These files also
have some optimisations for comparison against 0.0L, infinity and nan.
Since the ABI specifies that the high double of an IBM long double
pair is the value rounded to double, a high double of 0.0 means the
low double must also be 0.0.  The ABI also says that infinity and
nan are encoded in the high double, with the low double unspecified.
This means that tests for 0.0L, +/-Infinity and +/-NaN need only check
the high double.

	* sysdeps/ieee754/ldbl-128ibm/e_atan2l.c (__ieee754_atan2l): Rewrite
	all uses of ieee854 long double macros and unions.  Simplify tests
	for long doubles that are fully specified by the high double.
	* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_ilogbl.c (__ieee754_ilogbl): Likewise.
	Remove dead code too.
	* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
	(__ieee754_ynl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_log10l.c (__ieee754_log10l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
	Remove dead code too.
	* sysdeps/ieee754/ldbl-128ibm/k_tanl.c (__kernel_tanl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_isinf_nsl.c (__isinf_nsl): Likewise.
	Simplify.
	* sysdeps/ieee754/ldbl-128ibm/s_isinfl.c (___isinfl): Likewise.
	Simplify.
	* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_modfl.c (__modfl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl): Likewise.
	Comment on variable precision.
	* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_scalblnl.c (__scalblnl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (__scalbnl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Likewise.
	* sysdeps/powerpc/fpu/libm-test-ulps: Adjust tan_towardzero ulps.
2013-10-04 10:32:36 +09:30

106 lines
2.9 KiB
C

/* s_scalblnl.c -- long double version of s_scalbln.c.
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
*/
/* @(#)s_scalbln.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: $";
#endif
/*
* scalblnl (long double x, long int n)
* scalblnl(x,n) returns x* 2**n computed by exponent
* manipulation rather than by actually performing an
* exponentiation or a multiplication.
*/
#include <math.h>
#include <math_private.h>
#include <math_ldbl_opt.h>
static const long double
twolm54 = 5.55111512312578270212e-17, /* 0x3C90000000000000, 0 */
huge = 1.0E+300L,
tiny = 1.0E-300L;
static const double
two54 = 1.80143985094819840000e+16, /* 0x4350000000000000 */
twom54 = 5.55111512312578270212e-17; /* 0x3C90000000000000 */
long double __scalblnl (long double x, long int n)
{
int64_t k,l,hx,lx;
union { int64_t i; double d; } u;
double xhi, xlo;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS64 (hx, xhi);
EXTRACT_WORDS64 (lx, xlo);
k = (hx>>52)&0x7ff; /* extract exponent */
l = (lx>>52)&0x7ff;
if (k==0) { /* 0 or subnormal x */
if ((hx&0x7fffffffffffffffULL)==0) return x; /* +-0 */
u.i = hx;
u.d *= two54;
hx = u.i;
k = ((hx>>52)&0x7ff) - 54;
}
else if (k==0x7ff) return x+x; /* NaN or Inf */
if (n< -50000) return tiny*__copysignl(tiny,x); /*underflow */
if (n> 50000 || k+n > 0x7fe)
return huge*__copysignl(huge,x); /* overflow */
/* Now k and n are bounded we know that k = k+n does not
overflow. */
k = k+n;
if (k > 0) { /* normal result */
hx = (hx&0x800fffffffffffffULL)|(k<<52);
if ((lx & 0x7fffffffffffffffULL) == 0) { /* low part +-0 */
INSERT_WORDS64 (xhi, hx);
INSERT_WORDS64 (xlo, lx);
x = ldbl_pack (xhi, xlo);
return x;
}
if (l == 0) { /* low part subnormal */
u.i = lx;
u.d *= two54;
lx = u.i;
l = ((lx>>52)&0x7ff) - 54;
}
l = l + n;
if (l > 0)
lx = (lx&0x800fffffffffffffULL)|(l<<52);
else if (l <= -54)
lx = (lx&0x8000000000000000ULL);
else {
l += 54;
u.i = (lx&0x800fffffffffffffULL)|(l<<52);
u.d *= twom54;
lx = u.i;
}
INSERT_WORDS64 (xhi, hx);
INSERT_WORDS64 (xlo, lx);
x = ldbl_pack (xhi, xlo);
return x;
}
if (k <= -54)
return tiny*__copysignl(tiny,x); /*underflow*/
k += 54; /* subnormal result */
lx &= 0x8000000000000000ULL;
hx &= 0x800fffffffffffffULL;
INSERT_WORDS64 (xhi, hx|(k<<52));
INSERT_WORDS64 (xlo, lx);
x = ldbl_pack (xhi, xlo);
return x*twolm54;
}
long_double_symbol (libm, __scalblnl, scalblnl);